Metamath Proof Explorer


Theorem dih11

Description: The isomorphism H is one-to-one. Part of proof after Lemma N of Crawley p. 122 line 6. (Contributed by NM, 7-Mar-2014)

Ref Expression
Hypotheses dih11.b B=BaseK
dih11.h H=LHypK
dih11.i I=DIsoHKW
Assertion dih11 KHLWHXBYBIX=IYX=Y

Proof

Step Hyp Ref Expression
1 dih11.b B=BaseK
2 dih11.h H=LHypK
3 dih11.i I=DIsoHKW
4 eqss IX=IYIXIYIYIX
5 eqid K=K
6 1 5 2 3 dihord KHLWHXBYBIXIYXKY
7 1 5 2 3 dihord KHLWHYBXBIYIXYKX
8 7 3com23 KHLWHXBYBIYIXYKX
9 6 8 anbi12d KHLWHXBYBIXIYIYIXXKYYKX
10 simp1l KHLWHXBYBKHL
11 10 hllatd KHLWHXBYBKLat
12 1 5 latasymb KLatXBYBXKYYKXX=Y
13 11 12 syld3an1 KHLWHXBYBXKYYKXX=Y
14 9 13 bitrd KHLWHXBYBIXIYIYIXX=Y
15 4 14 bitrid KHLWHXBYBIX=IYX=Y