Metamath Proof Explorer


Theorem dih1dimb

Description: Two expressions for a 1-dimensional subspace of vector space H (when F is a nonzero vector i.e. non-identity translation). (Contributed by NM, 27-Apr-2014)

Ref Expression
Hypotheses dih1dimb.b B=BaseK
dih1dimb.h H=LHypK
dih1dimb.t T=LTrnKW
dih1dimb.r R=trLKW
dih1dimb.o O=hTIB
dih1dimb.u U=DVecHKW
dih1dimb.i I=DIsoHKW
dih1dimb.n N=LSpanU
Assertion dih1dimb KHLWHFTIRF=NFO

Proof

Step Hyp Ref Expression
1 dih1dimb.b B=BaseK
2 dih1dimb.h H=LHypK
3 dih1dimb.t T=LTrnKW
4 dih1dimb.r R=trLKW
5 dih1dimb.o O=hTIB
6 dih1dimb.u U=DVecHKW
7 dih1dimb.i I=DIsoHKW
8 dih1dimb.n N=LSpanU
9 simpl KHLWHFTKHLWH
10 1 2 3 4 trlcl KHLWHFTRFB
11 eqid K=K
12 11 2 3 4 trlle KHLWHFTRFKW
13 eqid DIsoBKW=DIsoBKW
14 1 11 2 7 13 dihvalb KHLWHRFBRFKWIRF=DIsoBKWRF
15 9 10 12 14 syl12anc KHLWHFTIRF=DIsoBKWRF
16 1 2 3 4 5 6 13 8 dib1dim2 KHLWHFTDIsoBKWRF=NFO
17 15 16 eqtrd KHLWHFTIRF=NFO