Metamath Proof Explorer


Theorem dih1dimb

Description: Two expressions for a 1-dimensional subspace of vector space H (when F is a nonzero vector i.e. non-identity translation). (Contributed by NM, 27-Apr-2014)

Ref Expression
Hypotheses dih1dimb.b B = Base K
dih1dimb.h H = LHyp K
dih1dimb.t T = LTrn K W
dih1dimb.r R = trL K W
dih1dimb.o O = h T I B
dih1dimb.u U = DVecH K W
dih1dimb.i I = DIsoH K W
dih1dimb.n N = LSpan U
Assertion dih1dimb K HL W H F T I R F = N F O

Proof

Step Hyp Ref Expression
1 dih1dimb.b B = Base K
2 dih1dimb.h H = LHyp K
3 dih1dimb.t T = LTrn K W
4 dih1dimb.r R = trL K W
5 dih1dimb.o O = h T I B
6 dih1dimb.u U = DVecH K W
7 dih1dimb.i I = DIsoH K W
8 dih1dimb.n N = LSpan U
9 simpl K HL W H F T K HL W H
10 1 2 3 4 trlcl K HL W H F T R F B
11 eqid K = K
12 11 2 3 4 trlle K HL W H F T R F K W
13 eqid DIsoB K W = DIsoB K W
14 1 11 2 7 13 dihvalb K HL W H R F B R F K W I R F = DIsoB K W R F
15 9 10 12 14 syl12anc K HL W H F T I R F = DIsoB K W R F
16 1 2 3 4 5 6 13 8 dib1dim2 K HL W H F T DIsoB K W R F = N F O
17 15 16 eqtrd K HL W H F T I R F = N F O