Description: A conjunction property of isomorphism H. (Contributed by NM, 21-Mar-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihglblem5a.b | |
|
dihglblem5a.m | |
||
dihglblem5a.h | |
||
dihglblem5a.i | |
||
Assertion | dihglblem5aN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihglblem5a.b | |
|
2 | dihglblem5a.m | |
|
3 | dihglblem5a.h | |
|
4 | dihglblem5a.i | |
|
5 | simpr | |
|
6 | hllat | |
|
7 | 6 | ad3antrrr | |
8 | simplr | |
|
9 | 1 3 | lhpbase | |
10 | 9 | ad3antlr | |
11 | eqid | |
|
12 | 1 11 2 | latleeqm1 | |
13 | 7 8 10 12 | syl3anc | |
14 | 5 13 | mpbid | |
15 | 14 | fveq2d | |
16 | simpll | |
|
17 | 1 11 3 4 | dihord | |
18 | 16 8 10 17 | syl3anc | |
19 | 5 18 | mpbird | |
20 | df-ss | |
|
21 | 19 20 | sylib | |
22 | 15 21 | eqtr4d | |
23 | eqid | |
|
24 | eqid | |
|
25 | eqid | |
|
26 | eqid | |
|
27 | eqid | |
|
28 | eqid | |
|
29 | eqid | |
|
30 | eqid | |
|
31 | 1 2 3 4 11 23 24 25 26 27 28 29 30 | dihglblem5apreN | |
32 | 31 | anassrs | |
33 | 22 32 | pm2.61dan | |