Metamath Proof Explorer


Theorem dihglblem5aN

Description: A conjunction property of isomorphism H. (Contributed by NM, 21-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihglblem5a.b B=BaseK
dihglblem5a.m ˙=meetK
dihglblem5a.h H=LHypK
dihglblem5a.i I=DIsoHKW
Assertion dihglblem5aN KHLWHXBIX˙W=IXIW

Proof

Step Hyp Ref Expression
1 dihglblem5a.b B=BaseK
2 dihglblem5a.m ˙=meetK
3 dihglblem5a.h H=LHypK
4 dihglblem5a.i I=DIsoHKW
5 simpr KHLWHXBXKWXKW
6 hllat KHLKLat
7 6 ad3antrrr KHLWHXBXKWKLat
8 simplr KHLWHXBXKWXB
9 1 3 lhpbase WHWB
10 9 ad3antlr KHLWHXBXKWWB
11 eqid K=K
12 1 11 2 latleeqm1 KLatXBWBXKWX˙W=X
13 7 8 10 12 syl3anc KHLWHXBXKWXKWX˙W=X
14 5 13 mpbid KHLWHXBXKWX˙W=X
15 14 fveq2d KHLWHXBXKWIX˙W=IX
16 simpll KHLWHXBXKWKHLWH
17 1 11 3 4 dihord KHLWHXBWBIXIWXKW
18 16 8 10 17 syl3anc KHLWHXBXKWIXIWXKW
19 5 18 mpbird KHLWHXBXKWIXIW
20 df-ss IXIWIXIW=IX
21 19 20 sylib KHLWHXBXKWIXIW=IX
22 15 21 eqtr4d KHLWHXBXKWIX˙W=IXIW
23 eqid joinK=joinK
24 eqid AtomsK=AtomsK
25 eqid ocKW=ocKW
26 eqid LTrnKW=LTrnKW
27 eqid trLKW=trLKW
28 eqid TEndoKW=TEndoKW
29 eqid ιhLTrnKW|hocKW=q=ιhLTrnKW|hocKW=q
30 eqid hLTrnKWIB=hLTrnKWIB
31 1 2 3 4 11 23 24 25 26 27 28 29 30 dihglblem5apreN KHLWHXB¬XKWIX˙W=IXIW
32 31 anassrs KHLWHXB¬XKWIX˙W=IXIW
33 22 32 pm2.61dan KHLWHXBIX˙W=IXIW