Metamath Proof Explorer


Theorem dihjatc

Description: Isomorphism H of lattice join of an element under the fiducial hyperplane with atom not under it. (Contributed by NM, 26-Aug-2014)

Ref Expression
Hypotheses dihjatc.b B = Base K
dihjatc.l ˙ = K
dihjatc.h H = LHyp K
dihjatc.j ˙ = join K
dihjatc.a A = Atoms K
dihjatc.u U = DVecH K W
dihjatc.s ˙ = LSSum U
dihjatc.i I = DIsoH K W
dihjatc.k φ K HL W H
dihjatc.x φ X B X ˙ W
dihjatc.p φ P A ¬ P ˙ W
Assertion dihjatc φ I X ˙ P = I X ˙ I P

Proof

Step Hyp Ref Expression
1 dihjatc.b B = Base K
2 dihjatc.l ˙ = K
3 dihjatc.h H = LHyp K
4 dihjatc.j ˙ = join K
5 dihjatc.a A = Atoms K
6 dihjatc.u U = DVecH K W
7 dihjatc.s ˙ = LSSum U
8 dihjatc.i I = DIsoH K W
9 dihjatc.k φ K HL W H
10 dihjatc.x φ X B X ˙ W
11 dihjatc.p φ P A ¬ P ˙ W
12 9 simpld φ K HL
13 hlop K HL K OP
14 12 13 syl φ K OP
15 eqid 1. K = 1. K
16 1 15 op1cl K OP 1. K B
17 14 16 syl φ 1. K B
18 10 simpld φ X B
19 11 simpld φ P A
20 1 5 atbase P A P B
21 19 20 syl φ P B
22 1 2 15 ople1 K OP P B P ˙ 1. K
23 14 21 22 syl2anc φ P ˙ 1. K
24 hlol K HL K OL
25 12 24 syl φ K OL
26 eqid meet K = meet K
27 1 26 15 olm12 K OL X B 1. K meet K X = X
28 25 18 27 syl2anc φ 1. K meet K X = X
29 10 simprd φ X ˙ W
30 28 29 eqbrtrd φ 1. K meet K X ˙ W
31 1 2 3 4 26 5 6 7 8 dihjatc3 K HL W H 1. K B X B P A ¬ P ˙ W P ˙ 1. K 1. K meet K X ˙ W I 1. K meet K X ˙ P = I 1. K meet K X ˙ I P
32 9 17 18 11 23 30 31 syl312anc φ I 1. K meet K X ˙ P = I 1. K meet K X ˙ I P
33 28 fvoveq1d φ I 1. K meet K X ˙ P = I X ˙ P
34 28 fveq2d φ I 1. K meet K X = I X
35 34 oveq1d φ I 1. K meet K X ˙ I P = I X ˙ I P
36 32 33 35 3eqtr3d φ I X ˙ P = I X ˙ I P