Metamath Proof Explorer


Theorem dihmeetlem18N

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem14.b B=BaseK
dihmeetlem14.l ˙=K
dihmeetlem14.h H=LHypK
dihmeetlem14.j ˙=joinK
dihmeetlem14.m ˙=meetK
dihmeetlem14.a A=AtomsK
dihmeetlem14.u U=DVecHKW
dihmeetlem14.s ˙=LSSumU
dihmeetlem14.i I=DIsoHKW
dihmeetlem18.z 0˙=0U
Assertion dihmeetlem18N KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WIYIp=0˙

Proof

Step Hyp Ref Expression
1 dihmeetlem14.b B=BaseK
2 dihmeetlem14.l ˙=K
3 dihmeetlem14.h H=LHypK
4 dihmeetlem14.j ˙=joinK
5 dihmeetlem14.m ˙=meetK
6 dihmeetlem14.a A=AtomsK
7 dihmeetlem14.u U=DVecHKW
8 dihmeetlem14.s ˙=LSSumU
9 dihmeetlem14.i I=DIsoHKW
10 dihmeetlem18.z 0˙=0U
11 simpl1 KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WKHLWH
12 simpl2 KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WXB¬X˙W
13 simpr1 KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WpA¬p˙W
14 simpl3 KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WYB
15 simpr33 KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WX˙Y˙W
16 simpr31 KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙Wp˙X
17 eqid 0.K=0.K
18 1 2 3 4 5 6 7 8 9 17 dihmeetlem17N KHLWHXB¬X˙WpA¬p˙WYBX˙Y˙Wp˙XY˙p=0.K
19 11 12 13 14 15 16 18 syl33anc KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WY˙p=0.K
20 19 fveq2d KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WIY˙p=I0.K
21 simpr2 KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WrA¬r˙W
22 simpr32 KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙Wr˙Y
23 simpl1l KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WKHL
24 hlop KHLKOP
25 23 24 syl KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WKOP
26 simpl1r KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WWH
27 1 3 lhpbase WHWB
28 26 27 syl KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WWB
29 1 2 17 op0le KOPWB0.K˙W
30 25 28 29 syl2anc KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙W0.K˙W
31 19 30 eqbrtrd KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WY˙p˙W
32 1 2 3 4 5 6 7 8 9 dihmeetlem16N KHLWHYBpA¬p˙WrA¬r˙Wr˙YY˙p˙WIY˙p=IYIp
33 11 14 13 21 22 31 32 syl33anc KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WIY˙p=IYIp
34 17 3 9 7 10 dih0 KHLWHI0.K=0˙
35 11 34 syl KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WI0.K=0˙
36 20 33 35 3eqtr3d KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WIYIp=0˙