Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihmeetlem14.b | |
|
dihmeetlem14.l | |
||
dihmeetlem14.h | |
||
dihmeetlem14.j | |
||
dihmeetlem14.m | |
||
dihmeetlem14.a | |
||
dihmeetlem14.u | |
||
dihmeetlem14.s | |
||
dihmeetlem14.i | |
||
dihmeetlem18.z | |
||
Assertion | dihmeetlem18N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihmeetlem14.b | |
|
2 | dihmeetlem14.l | |
|
3 | dihmeetlem14.h | |
|
4 | dihmeetlem14.j | |
|
5 | dihmeetlem14.m | |
|
6 | dihmeetlem14.a | |
|
7 | dihmeetlem14.u | |
|
8 | dihmeetlem14.s | |
|
9 | dihmeetlem14.i | |
|
10 | dihmeetlem18.z | |
|
11 | simpl1 | |
|
12 | simpl2 | |
|
13 | simpr1 | |
|
14 | simpl3 | |
|
15 | simpr33 | |
|
16 | simpr31 | |
|
17 | eqid | |
|
18 | 1 2 3 4 5 6 7 8 9 17 | dihmeetlem17N | |
19 | 11 12 13 14 15 16 18 | syl33anc | |
20 | 19 | fveq2d | |
21 | simpr2 | |
|
22 | simpr32 | |
|
23 | simpl1l | |
|
24 | hlop | |
|
25 | 23 24 | syl | |
26 | simpl1r | |
|
27 | 1 3 | lhpbase | |
28 | 26 27 | syl | |
29 | 1 2 17 | op0le | |
30 | 25 28 29 | syl2anc | |
31 | 19 30 | eqbrtrd | |
32 | 1 2 3 4 5 6 7 8 9 | dihmeetlem16N | |
33 | 11 14 13 21 22 31 32 | syl33anc | |
34 | 17 3 9 7 10 | dih0 | |
35 | 11 34 | syl | |
36 | 20 33 35 | 3eqtr3d | |