Metamath Proof Explorer


Theorem dihsslss

Description: The isomorphism H maps to subspaces. (Contributed by NM, 14-Mar-2014)

Ref Expression
Hypotheses dihsslss.h H=LHypK
dihsslss.u U=DVecHKW
dihsslss.i I=DIsoHKW
dihsslss.s S=LSubSpU
Assertion dihsslss KHLWHranIS

Proof

Step Hyp Ref Expression
1 dihsslss.h H=LHypK
2 dihsslss.u U=DVecHKW
3 dihsslss.i I=DIsoHKW
4 dihsslss.s S=LSubSpU
5 1 3 dihcnvid2 KHLWHxranIII-1x=x
6 eqid BaseK=BaseK
7 6 1 3 dihcnvcl KHLWHxranII-1xBaseK
8 6 1 3 2 4 dihlss KHLWHI-1xBaseKII-1xS
9 7 8 syldan KHLWHxranIII-1xS
10 5 9 eqeltrrd KHLWHxranIxS
11 10 ex KHLWHxranIxS
12 11 ssrdv KHLWHranIS