Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Algebra
Vector Space Dimension
dimcl
Next ⟩
lvecdim0i
Metamath Proof Explorer
Ascii
Unicode
Theorem
dimcl
Description:
Closure of the vector space dimension.
(Contributed by
Thierry Arnoux
, 18-May-2023)
Ref
Expression
Assertion
dimcl
⊢
V
∈
LVec
→
dim
⁡
V
∈
ℕ
0
*
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
LBasis
⁡
V
=
LBasis
⁡
V
2
1
lbsex
⊢
V
∈
LVec
→
LBasis
⁡
V
≠
∅
3
n0
⊢
LBasis
⁡
V
≠
∅
↔
∃
b
b
∈
LBasis
⁡
V
4
2
3
sylib
⊢
V
∈
LVec
→
∃
b
b
∈
LBasis
⁡
V
5
1
dimval
⊢
V
∈
LVec
∧
b
∈
LBasis
⁡
V
→
dim
⁡
V
=
b
6
hashxnn0
⊢
b
∈
LBasis
⁡
V
→
b
∈
ℕ
0
*
7
6
adantl
⊢
V
∈
LVec
∧
b
∈
LBasis
⁡
V
→
b
∈
ℕ
0
*
8
5
7
eqeltrd
⊢
V
∈
LVec
∧
b
∈
LBasis
⁡
V
→
dim
⁡
V
∈
ℕ
0
*
9
4
8
exlimddv
⊢
V
∈
LVec
→
dim
⁡
V
∈
ℕ
0
*