Metamath Proof Explorer


Theorem dimcl

Description: Closure of the vector space dimension. (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Assertion dimcl VLVecdimV0*

Proof

Step Hyp Ref Expression
1 eqid LBasisV=LBasisV
2 1 lbsex VLVecLBasisV
3 n0 LBasisVbbLBasisV
4 2 3 sylib VLVecbbLBasisV
5 1 dimval VLVecbLBasisVdimV=b
6 hashxnn0 bLBasisVb0*
7 6 adantl VLVecbLBasisVb0*
8 5 7 eqeltrd VLVecbLBasisVdimV0*
9 4 8 exlimddv VLVecdimV0*