Metamath Proof Explorer


Theorem disj

Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004) Avoid ax-10 , ax-11 , ax-12 . (Revised by Gino Giotto, 28-Jun-2024)

Ref Expression
Assertion disj AB=xA¬xB

Proof

Step Hyp Ref Expression
1 df-in AB=z|zAzB
2 1 eqeq1i AB=z|zAzB=
3 dfcleq =z|zAzBxxxz|zAzB
4 df-clab xz|zAzBxzzAzB
5 sb6 xzzAzBzz=xzAzB
6 id z=xz=x
7 eleq1w z=xzAxA
8 7 biimpd z=xzAxA
9 eleq1w z=xzBxB
10 9 biimpd z=xzBxB
11 8 10 anim12d z=xzAzBxAxB
12 6 11 embantd z=xz=xzAzBxAxB
13 12 spimvw zz=xzAzBxAxB
14 eleq1a xAz=xzA
15 eleq1a xBz=xzB
16 14 15 anim12ii xAxBz=xzAzB
17 16 alrimiv xAxBzz=xzAzB
18 13 17 impbii zz=xzAzBxAxB
19 4 5 18 3bitri xz|zAzBxAxB
20 19 bibi2i xxz|zAzBxxAxB
21 20 albii xxxz|zAzBxxxAxB
22 3 21 bitri =z|zAzBxxxAxB
23 eqcom z|zAzB==z|zAzB
24 bicom xAxBxxxAxB
25 24 albii xxAxBxxxxAxB
26 22 23 25 3bitr4i z|zAzB=xxAxBx
27 imnan xA¬xB¬xAxB
28 noel ¬x
29 28 nbn ¬xAxBxAxBx
30 27 29 bitr2i xAxBxxA¬xB
31 30 albii xxAxBxxxA¬xB
32 2 26 31 3bitri AB=xxA¬xB
33 df-ral xA¬xBxxA¬xB
34 32 33 bitr4i AB=xA¬xB