Metamath Proof Explorer


Theorem disjdsct

Description: A disjoint collection is distinct, i.e. each set in this collection is different of all others, provided that it does not contain the empty set This can be expressed as "the converse of the mapping function is a function", or "the mapping function is single-rooted". (Cf. funcnv ) (Contributed by Thierry Arnoux, 28-Feb-2017)

Ref Expression
Hypotheses disjdsct.0 x φ
disjdsct.1 _ x A
disjdsct.2 φ x A B V
disjdsct.3 φ Disj x A B
Assertion disjdsct φ Fun x A B -1

Proof

Step Hyp Ref Expression
1 disjdsct.0 x φ
2 disjdsct.1 _ x A
3 disjdsct.2 φ x A B V
4 disjdsct.3 φ Disj x A B
5 2 disjorsf Disj x A B i A j A i = j i / x B j / x B =
6 4 5 sylib φ i A j A i = j i / x B j / x B =
7 6 r19.21bi φ i A j A i = j i / x B j / x B =
8 7 r19.21bi φ i A j A i = j i / x B j / x B =
9 simpr3 φ i A j A i / x B j / x B = i / x B j / x B =
10 eldifsni B V B
11 3 10 syl φ x A B
12 11 sbimi i x φ x A i x B
13 sban i x φ x A i x φ i x x A
14 1 sbf i x φ φ
15 2 clelsb1fw i x x A i A
16 14 15 anbi12i i x φ i x x A φ i A
17 13 16 bitri i x φ x A φ i A
18 sbsbc i x B [˙i / x]˙ B
19 sbcne12 [˙i / x]˙ B i / x B i / x
20 csb0 i / x =
21 20 neeq2i i / x B i / x i / x B
22 18 19 21 3bitri i x B i / x B
23 12 17 22 3imtr3i φ i A i / x B
24 23 3ad2antr1 φ i A j A i / x B j / x B = i / x B
25 disj3 i / x B j / x B = i / x B = i / x B j / x B
26 25 biimpi i / x B j / x B = i / x B = i / x B j / x B
27 26 neeq1d i / x B j / x B = i / x B i / x B j / x B
28 27 biimpa i / x B j / x B = i / x B i / x B j / x B
29 difn0 i / x B j / x B i / x B j / x B
30 28 29 syl i / x B j / x B = i / x B i / x B j / x B
31 9 24 30 syl2anc φ i A j A i / x B j / x B = i / x B j / x B
32 31 3anassrs φ i A j A i / x B j / x B = i / x B j / x B
33 32 ex φ i A j A i / x B j / x B = i / x B j / x B
34 33 orim2d φ i A j A i = j i / x B j / x B = i = j i / x B j / x B
35 8 34 mpd φ i A j A i = j i / x B j / x B
36 35 ralrimiva φ i A j A i = j i / x B j / x B
37 36 ralrimiva φ i A j A i = j i / x B j / x B
38 nfmpt1 _ x x A B
39 eqid x A B = x A B
40 1 2 38 39 3 funcnv4mpt φ Fun x A B -1 i A j A i = j i / x B j / x B
41 37 40 mpbird φ Fun x A B -1