Metamath Proof Explorer


Theorem disjif2

Description: Property of a disjoint collection: if B ( x ) and B ( Y ) = D have a common element Z , then x = Y . (Contributed by Thierry Arnoux, 6-Apr-2017)

Ref Expression
Hypotheses disjif2.1 _ x A
disjif2.2 _ x C
disjif2.3 x = Y B = C
Assertion disjif2 Disj x A B x A Y A Z B Z C x = Y

Proof

Step Hyp Ref Expression
1 disjif2.1 _ x A
2 disjif2.2 _ x C
3 disjif2.3 x = Y B = C
4 inelcm Z B Z C B C
5 1 disjorsf Disj x A B y A z A y = z y / x B z / x B =
6 equequ1 y = x y = z x = z
7 csbeq1 y = x y / x B = x / x B
8 csbid x / x B = B
9 7 8 eqtrdi y = x y / x B = B
10 9 ineq1d y = x y / x B z / x B = B z / x B
11 10 eqeq1d y = x y / x B z / x B = B z / x B =
12 6 11 orbi12d y = x y = z y / x B z / x B = x = z B z / x B =
13 eqeq2 z = Y x = z x = Y
14 nfcv _ x Y
15 14 2 3 csbhypf z = Y z / x B = C
16 15 ineq2d z = Y B z / x B = B C
17 16 eqeq1d z = Y B z / x B = B C =
18 13 17 orbi12d z = Y x = z B z / x B = x = Y B C =
19 12 18 rspc2v x A Y A y A z A y = z y / x B z / x B = x = Y B C =
20 5 19 syl5bi x A Y A Disj x A B x = Y B C =
21 20 impcom Disj x A B x A Y A x = Y B C =
22 21 ord Disj x A B x A Y A ¬ x = Y B C =
23 22 necon1ad Disj x A B x A Y A B C x = Y
24 23 3impia Disj x A B x A Y A B C x = Y
25 4 24 syl3an3 Disj x A B x A Y A Z B Z C x = Y