Metamath Proof Explorer


Theorem disjif2

Description: Property of a disjoint collection: if B ( x ) and B ( Y ) = D have a common element Z , then x = Y . (Contributed by Thierry Arnoux, 6-Apr-2017)

Ref Expression
Hypotheses disjif2.1 _xA
disjif2.2 _xC
disjif2.3 x=YB=C
Assertion disjif2 DisjxABxAYAZBZCx=Y

Proof

Step Hyp Ref Expression
1 disjif2.1 _xA
2 disjif2.2 _xC
3 disjif2.3 x=YB=C
4 inelcm ZBZCBC
5 1 disjorsf DisjxAByAzAy=zy/xBz/xB=
6 equequ1 y=xy=zx=z
7 csbeq1 y=xy/xB=x/xB
8 csbid x/xB=B
9 7 8 eqtrdi y=xy/xB=B
10 9 ineq1d y=xy/xBz/xB=Bz/xB
11 10 eqeq1d y=xy/xBz/xB=Bz/xB=
12 6 11 orbi12d y=xy=zy/xBz/xB=x=zBz/xB=
13 eqeq2 z=Yx=zx=Y
14 nfcv _xY
15 14 2 3 csbhypf z=Yz/xB=C
16 15 ineq2d z=YBz/xB=BC
17 16 eqeq1d z=YBz/xB=BC=
18 13 17 orbi12d z=Yx=zBz/xB=x=YBC=
19 12 18 rspc2v xAYAyAzAy=zy/xBz/xB=x=YBC=
20 5 19 biimtrid xAYADisjxABx=YBC=
21 20 impcom DisjxABxAYAx=YBC=
22 21 ord DisjxABxAYA¬x=YBC=
23 22 necon1ad DisjxABxAYABCx=Y
24 23 3impia DisjxABxAYABCx=Y
25 4 24 syl3an3 DisjxABxAYAZBZCx=Y