Metamath Proof Explorer


Theorem disjpss

Description: A class is a proper subset of its union with a disjoint nonempty class. (Contributed by NM, 15-Sep-2004)

Ref Expression
Assertion disjpss AB=BAAB

Proof

Step Hyp Ref Expression
1 ssid BB
2 1 biantru BABABB
3 ssin BABBBAB
4 2 3 bitri BABAB
5 sseq2 AB=BABB
6 4 5 bitrid AB=BAB
7 ss0 BB=
8 6 7 syl6bi AB=BAB=
9 8 necon3ad AB=B¬BA
10 9 imp AB=B¬BA
11 nsspssun ¬BAABA
12 uncom BA=AB
13 12 psseq2i ABAAAB
14 11 13 bitri ¬BAAAB
15 10 14 sylib AB=BAAB