Metamath Proof Explorer


Theorem divalglem2

Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011) (Revised by AV, 2-Oct-2020)

Ref Expression
Hypotheses divalglem0.1 N
divalglem0.2 D
divalglem1.3 D0
divalglem2.4 S=r0|DNr
Assertion divalglem2 supS<S

Proof

Step Hyp Ref Expression
1 divalglem0.1 N
2 divalglem0.2 D
3 divalglem1.3 D0
4 divalglem2.4 S=r0|DNr
5 4 ssrab3 S0
6 nn0uz 0=0
7 5 6 sseqtri S0
8 zmulcl NDND
9 1 2 8 mp2an ND
10 nn0abscl NDND0
11 9 10 ax-mp ND0
12 11 nn0zi ND
13 zaddcl NNDN+ND
14 1 12 13 mp2an N+ND
15 1 2 3 divalglem1 0N+ND
16 elnn0z N+ND0N+ND0N+ND
17 14 15 16 mpbir2an N+ND0
18 iddvds DDD
19 dvdsabsb DDDDDD
20 19 anidms DDDDD
21 18 20 mpbid DDD
22 2 21 ax-mp DD
23 nn0abscl NN0
24 1 23 ax-mp N0
25 24 nn0negzi N
26 nn0abscl DD0
27 2 26 ax-mp D0
28 27 nn0zi D
29 dvdsmultr2 DNDDDDND
30 2 25 28 29 mp3an DDDND
31 22 30 ax-mp DND
32 zcn NN
33 1 32 ax-mp N
34 zcn DD
35 2 34 ax-mp D
36 33 35 absmuli ND=ND
37 36 negeqi ND=ND
38 df-neg ND=0ND
39 33 subidi NN=0
40 39 oveq1i N-N-ND=0ND
41 11 nn0cni ND
42 subsub4 NNNDN-N-ND=NN+ND
43 33 33 41 42 mp3an N-N-ND=NN+ND
44 38 40 43 3eqtr2ri NN+ND=ND
45 33 abscli N
46 45 recni N
47 35 abscli D
48 47 recni D
49 46 48 mulneg1i ND=ND
50 37 44 49 3eqtr4i NN+ND=ND
51 31 50 breqtrri DNN+ND
52 oveq2 r=N+NDNr=NN+ND
53 52 breq2d r=N+NDDNrDNN+ND
54 53 4 elrab2 N+NDSN+ND0DNN+ND
55 17 51 54 mpbir2an N+NDS
56 55 ne0ii S
57 infssuzcl S0SsupS<S
58 7 56 57 mp2an supS<S