Metamath Proof Explorer


Theorem divle1le

Description: A real number divided by a positive real number is less than or equal to 1 iff the real number is less than or equal to the positive real number. (Contributed by AV, 29-Jun-2021)

Ref Expression
Assertion divle1le AB+AB1AB

Proof

Step Hyp Ref Expression
1 simpl AB+A
2 rpregt0 B+B0<B
3 2 adantl AB+B0<B
4 1re 1
5 0lt1 0<1
6 4 5 pm3.2i 10<1
7 6 a1i AB+10<1
8 lediv23 AB0<B10<1AB1A1B
9 1 3 7 8 syl3anc AB+AB1A1B
10 recn AA
11 10 div1d AA1=A
12 11 adantr AB+A1=A
13 12 breq1d AB+A1BAB
14 9 13 bitrd AB+AB1AB