| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abscl |  | 
						
							| 2 |  | rerpdivcl |  | 
						
							| 3 | 1 2 | sylan |  | 
						
							| 4 |  | simpll |  | 
						
							| 5 |  | rpcn |  | 
						
							| 6 | 5 | ad2antrl |  | 
						
							| 7 |  | rpne0 |  | 
						
							| 8 | 7 | ad2antrl |  | 
						
							| 9 | 4 6 8 | absdivd |  | 
						
							| 10 |  | rpre |  | 
						
							| 11 | 10 | ad2antrl |  | 
						
							| 12 |  | rpge0 |  | 
						
							| 13 | 12 | ad2antrl |  | 
						
							| 14 | 11 13 | absidd |  | 
						
							| 15 | 14 | oveq2d |  | 
						
							| 16 | 9 15 | eqtrd |  | 
						
							| 17 |  | simprr |  | 
						
							| 18 | 4 | abscld |  | 
						
							| 19 |  | rpre |  | 
						
							| 20 | 19 | ad2antlr |  | 
						
							| 21 |  | rpgt0 |  | 
						
							| 22 | 21 | ad2antlr |  | 
						
							| 23 |  | rpgt0 |  | 
						
							| 24 | 23 | ad2antrl |  | 
						
							| 25 |  | ltdiv23 |  | 
						
							| 26 | 18 20 22 11 24 25 | syl122anc |  | 
						
							| 27 | 17 26 | mpbid |  | 
						
							| 28 | 16 27 | eqbrtrd |  | 
						
							| 29 | 28 | expr |  | 
						
							| 30 | 29 | ralrimiva |  | 
						
							| 31 |  | breq1 |  | 
						
							| 32 | 31 | rspceaimv |  | 
						
							| 33 | 3 30 32 | syl2anc |  | 
						
							| 34 | 33 | ralrimiva |  | 
						
							| 35 |  | simpl |  | 
						
							| 36 | 5 | adantl |  | 
						
							| 37 | 7 | adantl |  | 
						
							| 38 | 35 36 37 | divcld |  | 
						
							| 39 | 38 | ralrimiva |  | 
						
							| 40 |  | rpssre |  | 
						
							| 41 | 40 | a1i |  | 
						
							| 42 | 39 41 | rlim0lt |  | 
						
							| 43 | 34 42 | mpbird |  |