Metamath Proof Explorer


Theorem divrcnv

Description: The sequence of reciprocals of real numbers, multiplied by the factor A , converges to zero. (Contributed by Mario Carneiro, 18-Sep-2014)

Ref Expression
Assertion divrcnv An+An0

Proof

Step Hyp Ref Expression
1 abscl AA
2 rerpdivcl Ax+Ax
3 1 2 sylan Ax+Ax
4 simpll Ax+n+Ax<nA
5 rpcn n+n
6 5 ad2antrl Ax+n+Ax<nn
7 rpne0 n+n0
8 7 ad2antrl Ax+n+Ax<nn0
9 4 6 8 absdivd Ax+n+Ax<nAn=An
10 rpre n+n
11 10 ad2antrl Ax+n+Ax<nn
12 rpge0 n+0n
13 12 ad2antrl Ax+n+Ax<n0n
14 11 13 absidd Ax+n+Ax<nn=n
15 14 oveq2d Ax+n+Ax<nAn=An
16 9 15 eqtrd Ax+n+Ax<nAn=An
17 simprr Ax+n+Ax<nAx<n
18 4 abscld Ax+n+Ax<nA
19 rpre x+x
20 19 ad2antlr Ax+n+Ax<nx
21 rpgt0 x+0<x
22 21 ad2antlr Ax+n+Ax<n0<x
23 rpgt0 n+0<n
24 23 ad2antrl Ax+n+Ax<n0<n
25 ltdiv23 Ax0<xn0<nAx<nAn<x
26 18 20 22 11 24 25 syl122anc Ax+n+Ax<nAx<nAn<x
27 17 26 mpbid Ax+n+Ax<nAn<x
28 16 27 eqbrtrd Ax+n+Ax<nAn<x
29 28 expr Ax+n+Ax<nAn<x
30 29 ralrimiva Ax+n+Ax<nAn<x
31 breq1 y=Axy<nAx<n
32 31 rspceaimv Axn+Ax<nAn<xyn+y<nAn<x
33 3 30 32 syl2anc Ax+yn+y<nAn<x
34 33 ralrimiva Ax+yn+y<nAn<x
35 simpl An+A
36 5 adantl An+n
37 7 adantl An+n0
38 35 36 37 divcld An+An
39 38 ralrimiva An+An
40 rpssre +
41 40 a1i A+
42 39 41 rlim0lt An+An0x+yn+y<nAn<x
43 34 42 mpbird An+An0