Metamath Proof Explorer


Theorem divrngpr

Description: A division ring is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Assertion divrngpr RDivRingOpsRPrRing

Proof

Step Hyp Ref Expression
1 eqid 1stR=1stR
2 eqid 2ndR=2ndR
3 eqid GId1stR=GId1stR
4 eqid ran1stR=ran1stR
5 1 2 3 4 isdrngo1 RDivRingOpsRRingOps2ndRran1stRGId1stR×ran1stRGId1stRGrpOp
6 5 simplbi RDivRingOpsRRingOps
7 eqid GId2ndR=GId2ndR
8 1 2 4 3 7 dvrunz RDivRingOpsGId2ndRGId1stR
9 1 2 4 3 divrngidl RDivRingOpsIdlR=GId1stRran1stR
10 1 2 4 3 7 smprngopr RRingOpsGId2ndRGId1stRIdlR=GId1stRran1stRRPrRing
11 6 8 9 10 syl3anc RDivRingOpsRPrRing