Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Prime rings and integral domains
divrngpr
Next ⟩
isdmn
Metamath Proof Explorer
Ascii
Unicode
Theorem
divrngpr
Description:
A division ring is a prime ring.
(Contributed by
Jeff Madsen
, 6-Jan-2011)
Ref
Expression
Assertion
divrngpr
⊢
R
∈
DivRingOps
→
R
∈
PrRing
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
1
st
⁡
R
=
1
st
⁡
R
2
eqid
⊢
2
nd
⁡
R
=
2
nd
⁡
R
3
eqid
⊢
GId
⁡
1
st
⁡
R
=
GId
⁡
1
st
⁡
R
4
eqid
⊢
ran
⁡
1
st
⁡
R
=
ran
⁡
1
st
⁡
R
5
1
2
3
4
isdrngo1
⊢
R
∈
DivRingOps
↔
R
∈
RingOps
∧
2
nd
⁡
R
↾
ran
⁡
1
st
⁡
R
∖
GId
⁡
1
st
⁡
R
×
ran
⁡
1
st
⁡
R
∖
GId
⁡
1
st
⁡
R
∈
GrpOp
6
5
simplbi
⊢
R
∈
DivRingOps
→
R
∈
RingOps
7
eqid
⊢
GId
⁡
2
nd
⁡
R
=
GId
⁡
2
nd
⁡
R
8
1
2
4
3
7
dvrunz
⊢
R
∈
DivRingOps
→
GId
⁡
2
nd
⁡
R
≠
GId
⁡
1
st
⁡
R
9
1
2
4
3
divrngidl
⊢
R
∈
DivRingOps
→
Idl
⁡
R
=
GId
⁡
1
st
⁡
R
ran
⁡
1
st
⁡
R
10
1
2
4
3
7
smprngopr
⊢
R
∈
RingOps
∧
GId
⁡
2
nd
⁡
R
≠
GId
⁡
1
st
⁡
R
∧
Idl
⁡
R
=
GId
⁡
1
st
⁡
R
ran
⁡
1
st
⁡
R
→
R
∈
PrRing
11
6
8
9
10
syl3anc
⊢
R
∈
DivRingOps
→
R
∈
PrRing