Metamath Proof Explorer


Theorem divsubdir

Description: Distribution of division over subtraction. (Contributed by NM, 4-Mar-2005)

Ref Expression
Assertion divsubdir ABCC0ABC=ACBC

Proof

Step Hyp Ref Expression
1 negcl BB
2 divdir ABCC0A+BC=AC+BC
3 1 2 syl3an2 ABCC0A+BC=AC+BC
4 negsub ABA+B=AB
5 4 oveq1d ABA+BC=ABC
6 5 3adant3 ABCC0A+BC=ABC
7 3 6 eqtr3d ABCC0AC+BC=ABC
8 divneg BCC0BC=BC
9 8 3expb BCC0BC=BC
10 9 3adant1 ABCC0BC=BC
11 10 oveq2d ABCC0AC+BC=AC+BC
12 divcl ACC0AC
13 12 3expb ACC0AC
14 13 3adant2 ABCC0AC
15 divcl BCC0BC
16 15 3expb BCC0BC
17 16 3adant1 ABCC0BC
18 14 17 negsubd ABCC0AC+BC=ACBC
19 11 18 eqtr3d ABCC0AC+BC=ACBC
20 7 19 eqtr3d ABCC0ABC=ACBC