Metamath Proof Explorer


Theorem djaclN

Description: Closure of subspace join for DVecA partial vector space. (Contributed by NM, 5-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses djacl.h H=LHypK
djacl.t T=LTrnKW
djacl.i I=DIsoAKW
djacl.j J=vAKW
Assertion djaclN KHLWHXTYTXJYranI

Proof

Step Hyp Ref Expression
1 djacl.h H=LHypK
2 djacl.t T=LTrnKW
3 djacl.i I=DIsoAKW
4 djacl.j J=vAKW
5 eqid ocAKW=ocAKW
6 1 2 3 5 4 djavalN KHLWHXTYTXJY=ocAKWocAKWXocAKWY
7 inss1 ocAKWXocAKWYocAKWX
8 1 2 3 5 docaclN KHLWHXTocAKWXranI
9 8 adantrr KHLWHXTYTocAKWXranI
10 1 2 3 diaelrnN KHLWHocAKWXranIocAKWXT
11 9 10 syldan KHLWHXTYTocAKWXT
12 7 11 sstrid KHLWHXTYTocAKWXocAKWYT
13 1 2 3 5 docaclN KHLWHocAKWXocAKWYTocAKWocAKWXocAKWYranI
14 12 13 syldan KHLWHXTYTocAKWocAKWXocAKWYranI
15 6 14 eqeltrd KHLWHXTYTXJYranI