Metamath Proof Explorer


Theorem djulepw

Description: If A is idempotent under cardinal sum and B is dominated by the power set of A , then so is the cardinal sum of A and B . (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion djulepw A⊔︀AAB𝒫AA⊔︀B𝒫A

Proof

Step Hyp Ref Expression
1 djueq1 A=A⊔︀B=⊔︀B
2 1 breq1d A=A⊔︀B𝒫A⊔︀B𝒫A
3 relen Rel
4 3 brrelex2i A⊔︀AAAV
5 4 adantr A⊔︀AAB𝒫AAV
6 canth2g AVA𝒫A
7 sdomdom A𝒫AA𝒫A
8 5 6 7 3syl A⊔︀AAB𝒫AA𝒫A
9 simpr A⊔︀AAB𝒫AB𝒫A
10 reldom Rel
11 10 brrelex1i B𝒫ABV
12 djudom1 A𝒫ABVA⊔︀B𝒫A⊔︀B
13 11 12 sylan2 A𝒫AB𝒫AA⊔︀B𝒫A⊔︀B
14 simpr A𝒫AB𝒫AB𝒫A
15 10 brrelex2i B𝒫A𝒫AV
16 djudom2 B𝒫A𝒫AV𝒫A⊔︀B𝒫A⊔︀𝒫A
17 14 15 16 syl2anc2 A𝒫AB𝒫A𝒫A⊔︀B𝒫A⊔︀𝒫A
18 domtr A⊔︀B𝒫A⊔︀B𝒫A⊔︀B𝒫A⊔︀𝒫AA⊔︀B𝒫A⊔︀𝒫A
19 13 17 18 syl2anc A𝒫AB𝒫AA⊔︀B𝒫A⊔︀𝒫A
20 8 9 19 syl2anc A⊔︀AAB𝒫AA⊔︀B𝒫A⊔︀𝒫A
21 pwdju1 AV𝒫A⊔︀𝒫A𝒫A⊔︀1𝑜
22 5 21 syl A⊔︀AAB𝒫A𝒫A⊔︀𝒫A𝒫A⊔︀1𝑜
23 domentr A⊔︀B𝒫A⊔︀𝒫A𝒫A⊔︀𝒫A𝒫A⊔︀1𝑜A⊔︀B𝒫A⊔︀1𝑜
24 20 22 23 syl2anc A⊔︀AAB𝒫AA⊔︀B𝒫A⊔︀1𝑜
25 24 adantr A⊔︀AAB𝒫AAA⊔︀B𝒫A⊔︀1𝑜
26 0sdomg AVAA
27 5 26 syl A⊔︀AAB𝒫AAA
28 27 biimpar A⊔︀AAB𝒫AAA
29 0sdom1dom A1𝑜A
30 28 29 sylib A⊔︀AAB𝒫AA1𝑜A
31 5 adantr A⊔︀AAB𝒫AAAV
32 djudom2 1𝑜AAVA⊔︀1𝑜A⊔︀A
33 30 31 32 syl2anc A⊔︀AAB𝒫AAA⊔︀1𝑜A⊔︀A
34 simpll A⊔︀AAB𝒫AAA⊔︀AA
35 domentr A⊔︀1𝑜A⊔︀AA⊔︀AAA⊔︀1𝑜A
36 33 34 35 syl2anc A⊔︀AAB𝒫AAA⊔︀1𝑜A
37 pwdom A⊔︀1𝑜A𝒫A⊔︀1𝑜𝒫A
38 36 37 syl A⊔︀AAB𝒫AA𝒫A⊔︀1𝑜𝒫A
39 domtr A⊔︀B𝒫A⊔︀1𝑜𝒫A⊔︀1𝑜𝒫AA⊔︀B𝒫A
40 25 38 39 syl2anc A⊔︀AAB𝒫AAA⊔︀B𝒫A
41 0ex V
42 11 adantl A⊔︀AAB𝒫ABV
43 djucomen VBV⊔︀BB⊔︀
44 41 42 43 sylancr A⊔︀AAB𝒫A⊔︀BB⊔︀
45 dju0en BVB⊔︀B
46 domen1 B⊔︀BB⊔︀𝒫AB𝒫A
47 42 45 46 3syl A⊔︀AAB𝒫AB⊔︀𝒫AB𝒫A
48 9 47 mpbird A⊔︀AAB𝒫AB⊔︀𝒫A
49 endomtr ⊔︀BB⊔︀B⊔︀𝒫A⊔︀B𝒫A
50 44 48 49 syl2anc A⊔︀AAB𝒫A⊔︀B𝒫A
51 2 40 50 pm2.61ne A⊔︀AAB𝒫AA⊔︀B𝒫A