Description: If A is idempotent under cardinal sum and B is dominated by the power set of A , then so is the cardinal sum of A and B . (Contributed by Mario Carneiro, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | djulepw | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djueq1 | |
|
2 | 1 | breq1d | |
3 | relen | |
|
4 | 3 | brrelex2i | |
5 | 4 | adantr | |
6 | canth2g | |
|
7 | sdomdom | |
|
8 | 5 6 7 | 3syl | |
9 | simpr | |
|
10 | reldom | |
|
11 | 10 | brrelex1i | |
12 | djudom1 | |
|
13 | 11 12 | sylan2 | |
14 | simpr | |
|
15 | 10 | brrelex2i | |
16 | djudom2 | |
|
17 | 14 15 16 | syl2anc2 | |
18 | domtr | |
|
19 | 13 17 18 | syl2anc | |
20 | 8 9 19 | syl2anc | |
21 | pwdju1 | |
|
22 | 5 21 | syl | |
23 | domentr | |
|
24 | 20 22 23 | syl2anc | |
25 | 24 | adantr | |
26 | 0sdomg | |
|
27 | 5 26 | syl | |
28 | 27 | biimpar | |
29 | 0sdom1dom | |
|
30 | 28 29 | sylib | |
31 | 5 | adantr | |
32 | djudom2 | |
|
33 | 30 31 32 | syl2anc | |
34 | simpll | |
|
35 | domentr | |
|
36 | 33 34 35 | syl2anc | |
37 | pwdom | |
|
38 | 36 37 | syl | |
39 | domtr | |
|
40 | 25 38 39 | syl2anc | |
41 | 0ex | |
|
42 | 11 | adantl | |
43 | djucomen | |
|
44 | 41 42 43 | sylancr | |
45 | dju0en | |
|
46 | domen1 | |
|
47 | 42 45 46 | 3syl | |
48 | 9 47 | mpbird | |
49 | endomtr | |
|
50 | 44 48 49 | syl2anc | |
51 | 2 40 50 | pm2.61ne | |