| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmatscmcl.k |
|
| 2 |
|
dmatscmcl.a |
|
| 3 |
|
dmatscmcl.b |
|
| 4 |
|
dmatscmcl.s |
|
| 5 |
|
dmatscmcl.d |
|
| 6 |
|
simprl |
|
| 7 |
|
eqid |
|
| 8 |
2 3 7 5
|
dmatmat |
|
| 9 |
8
|
com12 |
|
| 10 |
9
|
adantl |
|
| 11 |
10
|
impcom |
|
| 12 |
6 11
|
jca |
|
| 13 |
1 2 3 4
|
matvscl |
|
| 14 |
12 13
|
syldan |
|
| 15 |
2 3 7 5
|
dmatel |
|
| 16 |
15
|
adantr |
|
| 17 |
|
simp-4r |
|
| 18 |
|
simpr |
|
| 19 |
18
|
anim1i |
|
| 20 |
19
|
adantr |
|
| 21 |
|
simpr |
|
| 22 |
17 20 21
|
3jca |
|
| 23 |
22
|
adantr |
|
| 24 |
|
eqid |
|
| 25 |
2 3 1 4 24
|
matvscacell |
|
| 26 |
23 25
|
syl |
|
| 27 |
|
oveq2 |
|
| 28 |
27
|
adantl |
|
| 29 |
1 24 7
|
ringrz |
|
| 30 |
29
|
ad5ant23 |
|
| 31 |
30
|
adantr |
|
| 32 |
26 28 31
|
3eqtrd |
|
| 33 |
32
|
ex |
|
| 34 |
33
|
imim2d |
|
| 35 |
34
|
ralimdvva |
|
| 36 |
35
|
expimpd |
|
| 37 |
16 36
|
sylbid |
|
| 38 |
37
|
impr |
|
| 39 |
2 3 7 5
|
dmatel |
|
| 40 |
39
|
adantr |
|
| 41 |
14 38 40
|
mpbir2and |
|