Metamath Proof Explorer


Theorem dmdprdsplit2

Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses dprdsplit.2 φ S : I SubGrp G
dprdsplit.i φ C D =
dprdsplit.u φ I = C D
dmdprdsplit.z Z = Cntz G
dmdprdsplit.0 0 ˙ = 0 G
dmdprdsplit2.1 φ G dom DProd S C
dmdprdsplit2.2 φ G dom DProd S D
dmdprdsplit2.3 φ G DProd S C Z G DProd S D
dmdprdsplit2.4 φ G DProd S C G DProd S D = 0 ˙
Assertion dmdprdsplit2 φ G dom DProd S

Proof

Step Hyp Ref Expression
1 dprdsplit.2 φ S : I SubGrp G
2 dprdsplit.i φ C D =
3 dprdsplit.u φ I = C D
4 dmdprdsplit.z Z = Cntz G
5 dmdprdsplit.0 0 ˙ = 0 G
6 dmdprdsplit2.1 φ G dom DProd S C
7 dmdprdsplit2.2 φ G dom DProd S D
8 dmdprdsplit2.3 φ G DProd S C Z G DProd S D
9 dmdprdsplit2.4 φ G DProd S C G DProd S D = 0 ˙
10 eqid mrCls SubGrp G = mrCls SubGrp G
11 dprdgrp G dom DProd S C G Grp
12 6 11 syl φ G Grp
13 ssun1 C C D
14 13 3 sseqtrrid φ C I
15 1 14 fssresd φ S C : C SubGrp G
16 15 fdmd φ dom S C = C
17 6 16 dprddomcld φ C V
18 ssun2 D C D
19 18 3 sseqtrrid φ D I
20 1 19 fssresd φ S D : D SubGrp G
21 20 fdmd φ dom S D = D
22 7 21 dprddomcld φ D V
23 unexg C V D V C D V
24 17 22 23 syl2anc φ C D V
25 3 24 eqeltrd φ I V
26 3 eleq2d φ x I x C D
27 elun x C D x C x D
28 26 27 bitrdi φ x I x C x D
29 1 2 3 4 5 6 7 8 9 10 dmdprdsplit2lem φ x C y I x y S x Z S y S x mrCls SubGrp G S I x 0 ˙
30 incom C D = D C
31 30 2 eqtr3id φ D C =
32 uncom C D = D C
33 3 32 eqtrdi φ I = D C
34 dprdsubg G dom DProd S C G DProd S C SubGrp G
35 6 34 syl φ G DProd S C SubGrp G
36 dprdsubg G dom DProd S D G DProd S D SubGrp G
37 7 36 syl φ G DProd S D SubGrp G
38 4 35 37 8 cntzrecd φ G DProd S D Z G DProd S C
39 incom G DProd S C G DProd S D = G DProd S D G DProd S C
40 39 9 eqtr3id φ G DProd S D G DProd S C = 0 ˙
41 1 31 33 4 5 7 6 38 40 10 dmdprdsplit2lem φ x D y I x y S x Z S y S x mrCls SubGrp G S I x 0 ˙
42 29 41 jaodan φ x C x D y I x y S x Z S y S x mrCls SubGrp G S I x 0 ˙
43 42 simpld φ x C x D y I x y S x Z S y
44 43 ex φ x C x D y I x y S x Z S y
45 28 44 sylbid φ x I y I x y S x Z S y
46 45 3imp2 φ x I y I x y S x Z S y
47 28 biimpa φ x I x C x D
48 29 simprd φ x C S x mrCls SubGrp G S I x 0 ˙
49 41 simprd φ x D S x mrCls SubGrp G S I x 0 ˙
50 48 49 jaodan φ x C x D S x mrCls SubGrp G S I x 0 ˙
51 47 50 syldan φ x I S x mrCls SubGrp G S I x 0 ˙
52 4 5 10 12 25 1 46 51 dmdprdd φ G dom DProd S