Step |
Hyp |
Ref |
Expression |
1 |
|
dprdsplit.2 |
|
2 |
|
dprdsplit.i |
|
3 |
|
dprdsplit.u |
|
4 |
|
dmdprdsplit.z |
|
5 |
|
dmdprdsplit.0 |
|
6 |
|
dmdprdsplit2.1 |
|
7 |
|
dmdprdsplit2.2 |
|
8 |
|
dmdprdsplit2.3 |
|
9 |
|
dmdprdsplit2.4 |
|
10 |
|
eqid |
|
11 |
|
dprdgrp |
|
12 |
6 11
|
syl |
|
13 |
|
ssun1 |
|
14 |
13 3
|
sseqtrrid |
|
15 |
1 14
|
fssresd |
|
16 |
15
|
fdmd |
|
17 |
6 16
|
dprddomcld |
|
18 |
|
ssun2 |
|
19 |
18 3
|
sseqtrrid |
|
20 |
1 19
|
fssresd |
|
21 |
20
|
fdmd |
|
22 |
7 21
|
dprddomcld |
|
23 |
|
unexg |
|
24 |
17 22 23
|
syl2anc |
|
25 |
3 24
|
eqeltrd |
|
26 |
3
|
eleq2d |
|
27 |
|
elun |
|
28 |
26 27
|
bitrdi |
|
29 |
1 2 3 4 5 6 7 8 9 10
|
dmdprdsplit2lem |
|
30 |
|
incom |
|
31 |
30 2
|
eqtr3id |
|
32 |
|
uncom |
|
33 |
3 32
|
eqtrdi |
|
34 |
|
dprdsubg |
|
35 |
6 34
|
syl |
|
36 |
|
dprdsubg |
|
37 |
7 36
|
syl |
|
38 |
4 35 37 8
|
cntzrecd |
|
39 |
|
incom |
|
40 |
39 9
|
eqtr3id |
|
41 |
1 31 33 4 5 7 6 38 40 10
|
dmdprdsplit2lem |
|
42 |
29 41
|
jaodan |
|
43 |
42
|
simpld |
|
44 |
43
|
ex |
|
45 |
28 44
|
sylbid |
|
46 |
45
|
3imp2 |
|
47 |
28
|
biimpa |
|
48 |
29
|
simprd |
|
49 |
41
|
simprd |
|
50 |
48 49
|
jaodan |
|
51 |
47 50
|
syldan |
|
52 |
4 5 10 12 25 1 46 51
|
dmdprdd |
|