Metamath Proof Explorer


Theorem dochkrsat

Description: The orthocomplement of a kernel is an atom iff it is nonzero. (Contributed by NM, 1-Nov-2014)

Ref Expression
Hypotheses dochkrsat.h H=LHypK
dochkrsat.o ˙=ocHKW
dochkrsat.u U=DVecHKW
dochkrsat.a A=LSAtomsU
dochkrsat.f F=LFnlU
dochkrsat.l L=LKerU
dochkrsat.z 0˙=0U
dochkrsat.k φKHLWH
dochkrsat.g φGF
Assertion dochkrsat φ˙LG0˙˙LGA

Proof

Step Hyp Ref Expression
1 dochkrsat.h H=LHypK
2 dochkrsat.o ˙=ocHKW
3 dochkrsat.u U=DVecHKW
4 dochkrsat.a A=LSAtomsU
5 dochkrsat.f F=LFnlU
6 dochkrsat.l L=LKerU
7 dochkrsat.z 0˙=0U
8 dochkrsat.k φKHLWH
9 dochkrsat.g φGF
10 eqid BaseU=BaseU
11 eqid LSHypU=LSHypU
12 1 2 3 10 11 5 6 8 9 dochkrshp φ˙˙LGBaseU˙˙LGLSHypU
13 1 3 8 dvhlmod φULMod
14 10 5 6 13 9 lkrssv φLGBaseU
15 1 2 3 10 7 8 14 dochn0nv φ˙LG0˙˙˙LGBaseU
16 eqid LSubSpU=LSubSpU
17 1 3 10 16 2 dochlss KHLWHLGBaseU˙LGLSubSpU
18 8 14 17 syl2anc φ˙LGLSubSpU
19 1 2 3 16 4 11 8 18 dochsatshpb φ˙LGA˙˙LGLSHypU
20 12 15 19 3bitr4d φ˙LG0˙˙LGA