Metamath Proof Explorer


Theorem dochn0nv

Description: An orthocomplement is nonzero iff the double orthocomplement is not the whole vector space. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses dochn0nv.h H=LHypK
dochn0nv.o ˙=ocHKW
dochn0nv.u U=DVecHKW
dochn0nv.v V=BaseU
dochn0nv.z 0˙=0U
dochn0nv.k φKHLWH
dochn0nv.x φXV
Assertion dochn0nv φ˙X0˙˙˙XV

Proof

Step Hyp Ref Expression
1 dochn0nv.h H=LHypK
2 dochn0nv.o ˙=ocHKW
3 dochn0nv.u U=DVecHKW
4 dochn0nv.v V=BaseU
5 dochn0nv.z 0˙=0U
6 dochn0nv.k φKHLWH
7 dochn0nv.x φXV
8 eqid DIsoHKW=DIsoHKW
9 1 8 3 4 2 dochcl KHLWHXV˙XranDIsoHKW
10 6 7 9 syl2anc φ˙XranDIsoHKW
11 1 8 2 dochoc KHLWH˙XranDIsoHKW˙˙˙X=˙X
12 6 10 11 syl2anc φ˙˙˙X=˙X
13 1 3 2 4 5 doch1 KHLWH˙V=0˙
14 6 13 syl φ˙V=0˙
15 12 14 eqeq12d φ˙˙˙X=˙V˙X=0˙
16 1 3 4 2 dochssv KHLWHXV˙XV
17 6 7 16 syl2anc φ˙XV
18 1 8 3 4 2 dochcl KHLWH˙XV˙˙XranDIsoHKW
19 6 17 18 syl2anc φ˙˙XranDIsoHKW
20 1 8 3 4 dih1rn KHLWHVranDIsoHKW
21 6 20 syl φVranDIsoHKW
22 1 8 2 6 19 21 doch11 φ˙˙˙X=˙V˙˙X=V
23 15 22 bitr3d φ˙X=0˙˙˙X=V
24 23 necon3bid φ˙X0˙˙˙XV