Metamath Proof Explorer


Theorem dochnel

Description: A nonzero vector doesn't belong to the orthocomplement of its singleton. (Contributed by NM, 27-Oct-2014)

Ref Expression
Hypotheses dochnel.h H=LHypK
dochnel.o ˙=ocHKW
dochnel.u U=DVecHKW
dochnel.v V=BaseU
dochnel.z 0˙=0U
dochnel.k φKHLWH
dochnel.x φXV0˙
Assertion dochnel φ¬X˙X

Proof

Step Hyp Ref Expression
1 dochnel.h H=LHypK
2 dochnel.o ˙=ocHKW
3 dochnel.u U=DVecHKW
4 dochnel.v V=BaseU
5 dochnel.z 0˙=0U
6 dochnel.k φKHLWH
7 dochnel.x φXV0˙
8 eqid LSubSpU=LSubSpU
9 1 3 6 dvhlmod φULMod
10 7 eldifad φXV
11 eqid LSpanU=LSpanU
12 4 8 11 lspsncl ULModXVLSpanUXLSubSpU
13 9 10 12 syl2anc φLSpanUXLSubSpU
14 4 11 lspsnid ULModXVXLSpanUX
15 9 10 14 syl2anc φXLSpanUX
16 eldifsni XV0˙X0˙
17 7 16 syl φX0˙
18 eldifsn XLSpanUX0˙XLSpanUXX0˙
19 15 17 18 sylanbrc φXLSpanUX0˙
20 1 3 8 5 2 6 13 19 dochnel2 φ¬X˙LSpanUX
21 10 snssd φXV
22 1 3 2 4 11 6 21 dochocsp φ˙LSpanUX=˙X
23 20 22 neleqtrd φ¬X˙X