Metamath Proof Explorer


Theorem dpjrid

Description: The Y -th index projection annihilates elements of other factors. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1 φGdomDProdS
dpjfval.2 φdomS=I
dpjfval.p P=GdProjS
dpjlid.3 φXI
dpjlid.4 φASX
dpjrid.0 0˙=0G
dpjrid.5 φYI
dpjrid.6 φYX
Assertion dpjrid φPYA=0˙

Proof

Step Hyp Ref Expression
1 dpjfval.1 φGdomDProdS
2 dpjfval.2 φdomS=I
3 dpjfval.p P=GdProjS
4 dpjlid.3 φXI
5 dpjlid.4 φASX
6 dpjrid.0 0˙=0G
7 dpjrid.5 φYI
8 dpjrid.6 φYX
9 fveq2 x=YPx=PY
10 9 fveq1d x=YPxA=PYA
11 eqeq1 x=Yx=XY=X
12 11 ifbid x=Yifx=XA0˙=ifY=XA0˙
13 10 12 eqeq12d x=YPxA=ifx=XA0˙PYA=ifY=XA0˙
14 eqid hiISi|finSupp0˙h=hiISi|finSupp0˙h
15 eqid xIifx=XA0˙=xIifx=XA0˙
16 6 14 1 2 4 5 15 dprdfid φxIifx=XA0˙hiISi|finSupp0˙hGxIifx=XA0˙=A
17 16 simprd φGxIifx=XA0˙=A
18 17 eqcomd φA=GxIifx=XA0˙
19 1 2 4 dprdub φSXGDProdS
20 19 5 sseldd φAGDProdS
21 16 simpld φxIifx=XA0˙hiISi|finSupp0˙h
22 1 2 3 20 6 14 21 dpjeq φA=GxIifx=XA0˙xIPxA=ifx=XA0˙
23 18 22 mpbid φxIPxA=ifx=XA0˙
24 13 23 7 rspcdva φPYA=ifY=XA0˙
25 ifnefalse YXifY=XA0˙=0˙
26 8 25 syl φifY=XA0˙=0˙
27 24 26 eqtrd φPYA=0˙