Metamath Proof Explorer


Theorem dprddisj

Description: The function S is a family having trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses dprdcntz.1 φ G dom DProd S
dprdcntz.2 φ dom S = I
dprdcntz.3 φ X I
dprddisj.0 0 ˙ = 0 G
dprddisj.k K = mrCls SubGrp G
Assertion dprddisj φ S X K S I X = 0 ˙

Proof

Step Hyp Ref Expression
1 dprdcntz.1 φ G dom DProd S
2 dprdcntz.2 φ dom S = I
3 dprdcntz.3 φ X I
4 dprddisj.0 0 ˙ = 0 G
5 dprddisj.k K = mrCls SubGrp G
6 fveq2 x = X S x = S X
7 sneq x = X x = X
8 7 difeq2d x = X I x = I X
9 8 imaeq2d x = X S I x = S I X
10 9 unieqd x = X S I x = S I X
11 10 fveq2d x = X K S I x = K S I X
12 6 11 ineq12d x = X S x K S I x = S X K S I X
13 12 eqeq1d x = X S x K S I x = 0 ˙ S X K S I X = 0 ˙
14 1 2 dprddomcld φ I V
15 eqid Cntz G = Cntz G
16 15 4 5 dmdprd I V dom S = I G dom DProd S G Grp S : I SubGrp G x I y I x S x Cntz G S y S x K S I x = 0 ˙
17 14 2 16 syl2anc φ G dom DProd S G Grp S : I SubGrp G x I y I x S x Cntz G S y S x K S I x = 0 ˙
18 1 17 mpbid φ G Grp S : I SubGrp G x I y I x S x Cntz G S y S x K S I x = 0 ˙
19 18 simp3d φ x I y I x S x Cntz G S y S x K S I x = 0 ˙
20 simpr y I x S x Cntz G S y S x K S I x = 0 ˙ S x K S I x = 0 ˙
21 20 ralimi x I y I x S x Cntz G S y S x K S I x = 0 ˙ x I S x K S I x = 0 ˙
22 19 21 syl φ x I S x K S I x = 0 ˙
23 13 22 3 rspcdva φ S X K S I X = 0 ˙