Metamath Proof Explorer


Theorem drng0mxidl

Description: In a division ring, the zero ideal is a maximal ideal. (Contributed by Thierry Arnoux, 16-Mar-2025)

Ref Expression
Hypothesis drngmxidl.1 0˙=0R
Assertion drng0mxidl Could not format assertion : No typesetting found for |- ( R e. DivRing -> { .0. } e. ( MaxIdeal ` R ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 drngmxidl.1 0˙=0R
2 drngring RDivRingRRing
3 eqid LIdealR=LIdealR
4 3 1 lidl0 RRing0˙LIdealR
5 2 4 syl RDivRing0˙LIdealR
6 eqid BaseR=BaseR
7 eqid 1R=1R
8 6 7 ringidcl RRing1RBaseR
9 2 8 syl RDivRing1RBaseR
10 drngnzr RDivRingRNzRing
11 7 1 nzrnz RNzRing1R0˙
12 nelsn 1R0˙¬1R0˙
13 10 11 12 3syl RDivRing¬1R0˙
14 nelne1 1RBaseR¬1R0˙BaseR0˙
15 9 13 14 syl2anc RDivRingBaseR0˙
16 15 necomd RDivRing0˙BaseR
17 6 1 3 drngnidl RDivRingLIdealR=0˙BaseR
18 17 eleq2d RDivRingjLIdealRj0˙BaseR
19 18 biimpa RDivRingjLIdealRj0˙BaseR
20 elpri j0˙BaseRj=0˙j=BaseR
21 19 20 syl RDivRingjLIdealRj=0˙j=BaseR
22 21 a1d RDivRingjLIdealR0˙jj=0˙j=BaseR
23 22 ralrimiva RDivRingjLIdealR0˙jj=0˙j=BaseR
24 6 ismxidl Could not format ( R e. Ring -> ( { .0. } e. ( MaxIdeal ` R ) <-> ( { .0. } e. ( LIdeal ` R ) /\ { .0. } =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( { .0. } C_ j -> ( j = { .0. } \/ j = ( Base ` R ) ) ) ) ) ) : No typesetting found for |- ( R e. Ring -> ( { .0. } e. ( MaxIdeal ` R ) <-> ( { .0. } e. ( LIdeal ` R ) /\ { .0. } =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( { .0. } C_ j -> ( j = { .0. } \/ j = ( Base ` R ) ) ) ) ) ) with typecode |-
25 24 biimpar Could not format ( ( R e. Ring /\ ( { .0. } e. ( LIdeal ` R ) /\ { .0. } =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( { .0. } C_ j -> ( j = { .0. } \/ j = ( Base ` R ) ) ) ) ) -> { .0. } e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ( R e. Ring /\ ( { .0. } e. ( LIdeal ` R ) /\ { .0. } =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( { .0. } C_ j -> ( j = { .0. } \/ j = ( Base ` R ) ) ) ) ) -> { .0. } e. ( MaxIdeal ` R ) ) with typecode |-
26 2 5 16 23 25 syl13anc Could not format ( R e. DivRing -> { .0. } e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( R e. DivRing -> { .0. } e. ( MaxIdeal ` R ) ) with typecode |-