Description: The interior and closure operators on a topology are duals of each other. See also kur14lem2 . (Contributed by RP, 21-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dssmapclsntr.x | |
|
dssmapclsntr.k | |
||
dssmapclsntr.i | |
||
dssmapclsntr.o | |
||
dssmapclsntr.d | |
||
Assertion | dssmapntrcls | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dssmapclsntr.x | |
|
2 | dssmapclsntr.k | |
|
3 | dssmapclsntr.i | |
|
4 | dssmapclsntr.o | |
|
5 | dssmapclsntr.d | |
|
6 | vpwex | |
|
7 | 6 | inex2 | |
8 | 7 | uniex | |
9 | 8 | rgenw | |
10 | nfcv | |
|
11 | 10 | fnmptf | |
12 | 9 11 | mp1i | |
13 | 1 | ntrfval | |
14 | 3 13 | eqtrid | |
15 | 14 | fneq1d | |
16 | 12 15 | mpbird | |
17 | 1 | topopn | |
18 | 4 5 17 | dssmapf1od | |
19 | f1of | |
|
20 | 18 19 | syl | |
21 | 1 2 | clselmap | |
22 | 20 21 | ffvelcdmd | |
23 | elmapfn | |
|
24 | 22 23 | syl | |
25 | elpwi | |
|
26 | 1 | ntrval2 | |
27 | 25 26 | sylan2 | |
28 | 3 | fveq1i | |
29 | 2 | fveq1i | |
30 | 29 | difeq2i | |
31 | 27 28 30 | 3eqtr4g | |
32 | 17 | adantr | |
33 | 21 | adantr | |
34 | eqid | |
|
35 | simpr | |
|
36 | eqid | |
|
37 | 4 5 32 33 34 35 36 | dssmapfv3d | |
38 | 31 37 | eqtr4d | |
39 | 16 24 38 | eqfnfvd | |