Metamath Proof Explorer


Theorem dssmapntrcls

Description: The interior and closure operators on a topology are duals of each other. See also kur14lem2 . (Contributed by RP, 21-Apr-2021)

Ref Expression
Hypotheses dssmapclsntr.x X=J
dssmapclsntr.k K=clsJ
dssmapclsntr.i I=intJ
dssmapclsntr.o O=bVf𝒫b𝒫bs𝒫bbfbs
dssmapclsntr.d D=OX
Assertion dssmapntrcls JTopI=DK

Proof

Step Hyp Ref Expression
1 dssmapclsntr.x X=J
2 dssmapclsntr.k K=clsJ
3 dssmapclsntr.i I=intJ
4 dssmapclsntr.o O=bVf𝒫b𝒫bs𝒫bbfbs
5 dssmapclsntr.d D=OX
6 vpwex 𝒫tV
7 6 inex2 J𝒫tV
8 7 uniex J𝒫tV
9 8 rgenw t𝒫XJ𝒫tV
10 nfcv _t𝒫X
11 10 fnmptf t𝒫XJ𝒫tVt𝒫XJ𝒫tFn𝒫X
12 9 11 mp1i JTopt𝒫XJ𝒫tFn𝒫X
13 1 ntrfval JTopintJ=t𝒫XJ𝒫t
14 3 13 eqtrid JTopI=t𝒫XJ𝒫t
15 14 fneq1d JTopIFn𝒫Xt𝒫XJ𝒫tFn𝒫X
16 12 15 mpbird JTopIFn𝒫X
17 1 topopn JTopXJ
18 4 5 17 dssmapf1od JTopD:𝒫X𝒫X1-1 onto𝒫X𝒫X
19 f1of D:𝒫X𝒫X1-1 onto𝒫X𝒫XD:𝒫X𝒫X𝒫X𝒫X
20 18 19 syl JTopD:𝒫X𝒫X𝒫X𝒫X
21 1 2 clselmap JTopK𝒫X𝒫X
22 20 21 ffvelcdmd JTopDK𝒫X𝒫X
23 elmapfn DK𝒫X𝒫XDKFn𝒫X
24 22 23 syl JTopDKFn𝒫X
25 elpwi t𝒫XtX
26 1 ntrval2 JToptXintJt=XclsJXt
27 25 26 sylan2 JTopt𝒫XintJt=XclsJXt
28 3 fveq1i It=intJt
29 2 fveq1i KXt=clsJXt
30 29 difeq2i XKXt=XclsJXt
31 27 28 30 3eqtr4g JTopt𝒫XIt=XKXt
32 17 adantr JTopt𝒫XXJ
33 21 adantr JTopt𝒫XK𝒫X𝒫X
34 eqid DK=DK
35 simpr JTopt𝒫Xt𝒫X
36 eqid DKt=DKt
37 4 5 32 33 34 35 36 dssmapfv3d JTopt𝒫XDKt=XKXt
38 31 37 eqtr4d JTopt𝒫XIt=DKt
39 16 24 38 eqfnfvd JTopI=DK