Metamath Proof Explorer


Theorem dvasinbx

Description: Derivative exercise: the derivative with respect to y of A x sin(By), given two constants A and B . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion dvasinbx ABdyAsinBydy=yABcosBy

Proof

Step Hyp Ref Expression
1 cnelprrecn
2 1 a1i AB
3 simpll AByA
4 0cnd ABy0
5 1 a1i A
6 id AA
7 5 6 dvmptc AdyAdy=y0
8 7 adantr ABdyAdy=y0
9 mulcl ByBy
10 9 sincld BysinBy
11 10 adantll ABysinBy
12 simpl ByB
13 9 coscld BycosBy
14 12 13 mulcld ByBcosBy
15 14 adantll AByBcosBy
16 dvsinax BdysinBydy=yBcosBy
17 16 adantl ABdysinBydy=yBcosBy
18 2 3 4 8 11 15 17 dvmptmul ABdyAsinBydy=y0sinBy+BcosByA
19 11 mul02d ABy0sinBy=0
20 12 adantll AByB
21 13 adantll ABycosBy
22 20 21 3 mul32d AByBcosByA=BAcosBy
23 simpr ABB
24 simpl ABA
25 23 24 mulcomd ABBA=AB
26 25 adantr AByBA=AB
27 26 oveq1d AByBAcosBy=ABcosBy
28 22 27 eqtrd AByBcosByA=ABcosBy
29 19 28 oveq12d ABy0sinBy+BcosByA=0+ABcosBy
30 3 20 mulcld AByAB
31 30 21 mulcld AByABcosBy
32 31 addlidd ABy0+ABcosBy=ABcosBy
33 29 32 eqtrd ABy0sinBy+BcosByA=ABcosBy
34 33 mpteq2dva ABy0sinBy+BcosByA=yABcosBy
35 18 34 eqtrd ABdyAsinBydy=yABcosBy