Metamath Proof Explorer


Theorem dvdslegcd

Description: An integer which divides both operands of the gcd operator is bounded by it. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion dvdslegcd K M N ¬ M = 0 N = 0 K M K N K M gcd N

Proof

Step Hyp Ref Expression
1 eqid n | z M N n z = n | z M N n z
2 eqid n | n M n N = n | n M n N
3 1 2 gcdcllem3 M N ¬ M = 0 N = 0 sup n | n M n N < sup n | n M n N < M sup n | n M n N < N K K M K N K sup n | n M n N <
4 3 simp3d M N ¬ M = 0 N = 0 K K M K N K sup n | n M n N <
5 gcdn0val M N ¬ M = 0 N = 0 M gcd N = sup n | n M n N <
6 5 breq2d M N ¬ M = 0 N = 0 K M gcd N K sup n | n M n N <
7 4 6 sylibrd M N ¬ M = 0 N = 0 K K M K N K M gcd N
8 7 com12 K K M K N M N ¬ M = 0 N = 0 K M gcd N
9 8 3expb K K M K N M N ¬ M = 0 N = 0 K M gcd N
10 9 com12 M N ¬ M = 0 N = 0 K K M K N K M gcd N
11 10 exp4b M N ¬ M = 0 N = 0 K K M K N K M gcd N
12 11 com23 M N K ¬ M = 0 N = 0 K M K N K M gcd N
13 12 impcom K M N ¬ M = 0 N = 0 K M K N K M gcd N
14 13 3impb K M N ¬ M = 0 N = 0 K M K N K M gcd N
15 14 imp K M N ¬ M = 0 N = 0 K M K N K M gcd N