Metamath Proof Explorer


Theorem dvdslegcd

Description: An integer which divides both operands of the gcd operator is bounded by it. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion dvdslegcd KMN¬M=0N=0KMKNKMgcdN

Proof

Step Hyp Ref Expression
1 eqid n|zMNnz=n|zMNnz
2 eqid n|nMnN=n|nMnN
3 1 2 gcdcllem3 MN¬M=0N=0supn|nMnN<supn|nMnN<Msupn|nMnN<NKKMKNKsupn|nMnN<
4 3 simp3d MN¬M=0N=0KKMKNKsupn|nMnN<
5 gcdn0val MN¬M=0N=0MgcdN=supn|nMnN<
6 5 breq2d MN¬M=0N=0KMgcdNKsupn|nMnN<
7 4 6 sylibrd MN¬M=0N=0KKMKNKMgcdN
8 7 com12 KKMKNMN¬M=0N=0KMgcdN
9 8 3expb KKMKNMN¬M=0N=0KMgcdN
10 9 com12 MN¬M=0N=0KKMKNKMgcdN
11 10 exp4b MN¬M=0N=0KKMKNKMgcdN
12 11 com23 MNK¬M=0N=0KMKNKMgcdN
13 12 impcom KMN¬M=0N=0KMKNKMgcdN
14 13 3impb KMN¬M=0N=0KMKNKMgcdN
15 14 imp KMN¬M=0N=0KMKNKMgcdN