Metamath Proof Explorer


Theorem dvdsr02

Description: Only zero is divisible by zero. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses dvdsr0.b B=BaseR
dvdsr0.d ˙=rR
dvdsr0.z 0˙=0R
Assertion dvdsr02 RRingXB0˙˙XX=0˙

Proof

Step Hyp Ref Expression
1 dvdsr0.b B=BaseR
2 dvdsr0.d ˙=rR
3 dvdsr0.z 0˙=0R
4 1 3 ring0cl RRing0˙B
5 4 adantr RRingXB0˙B
6 eqid R=R
7 1 2 6 dvdsr2 0˙B0˙˙XxBxR0˙=X
8 5 7 syl RRingXB0˙˙XxBxR0˙=X
9 1 6 3 ringrz RRingxBxR0˙=0˙
10 9 eqeq1d RRingxBxR0˙=X0˙=X
11 eqcom 0˙=XX=0˙
12 10 11 bitrdi RRingxBxR0˙=XX=0˙
13 12 rexbidva RRingxBxR0˙=XxBX=0˙
14 ringgrp RRingRGrp
15 1 grpbn0 RGrpB
16 r19.9rzv BX=0˙xBX=0˙
17 14 15 16 3syl RRingX=0˙xBX=0˙
18 13 17 bitr4d RRingxBxR0˙=XX=0˙
19 18 adantr RRingXBxBxR0˙=XX=0˙
20 8 19 bitrd RRingXB0˙˙XX=0˙