Metamath Proof Explorer


Theorem dvh3dim

Description: There is a vector that is outside the span of 2 others. (Contributed by NM, 24-Apr-2015)

Ref Expression
Hypotheses dvh3dim.h H=LHypK
dvh3dim.u U=DVecHKW
dvh3dim.v V=BaseU
dvh3dim.n N=LSpanU
dvh3dim.k φKHLWH
dvh3dim.x φXV
dvh3dim.y φYV
Assertion dvh3dim φzV¬zNXY

Proof

Step Hyp Ref Expression
1 dvh3dim.h H=LHypK
2 dvh3dim.u U=DVecHKW
3 dvh3dim.v V=BaseU
4 dvh3dim.n N=LSpanU
5 dvh3dim.k φKHLWH
6 dvh3dim.x φXV
7 dvh3dim.y φYV
8 1 2 3 4 5 7 dvh2dim φzV¬zNY
9 8 adantr φX=0UzV¬zNY
10 prcom XY=YX
11 preq2 X=0UYX=Y0U
12 10 11 eqtrid X=0UXY=Y0U
13 12 fveq2d X=0UNXY=NY0U
14 eqid 0U=0U
15 1 2 5 dvhlmod φULMod
16 3 14 4 15 7 lsppr0 φNY0U=NY
17 13 16 sylan9eqr φX=0UNXY=NY
18 17 eleq2d φX=0UzNXYzNY
19 18 notbid φX=0U¬zNXY¬zNY
20 19 rexbidv φX=0UzV¬zNXYzV¬zNY
21 9 20 mpbird φX=0UzV¬zNXY
22 1 2 3 4 5 6 dvh2dim φzV¬zNX
23 22 adantr φY=0UzV¬zNX
24 preq2 Y=0UXY=X0U
25 24 fveq2d Y=0UNXY=NX0U
26 3 14 4 15 6 lsppr0 φNX0U=NX
27 25 26 sylan9eqr φY=0UNXY=NX
28 27 eleq2d φY=0UzNXYzNX
29 28 notbid φY=0U¬zNXY¬zNX
30 29 rexbidv φY=0UzV¬zNXYzV¬zNX
31 23 30 mpbird φY=0UzV¬zNXY
32 5 adantr φX0UY0UKHLWH
33 6 adantr φX0UY0UXV
34 7 adantr φX0UY0UYV
35 simprl φX0UY0UX0U
36 simprr φX0UY0UY0U
37 1 2 3 4 32 33 34 14 35 36 dvhdimlem φX0UY0UzV¬zNXY
38 21 31 37 pm2.61da2ne φzV¬zNXY