Metamath Proof Explorer


Theorem dvh3dim

Description: There is a vector that is outside the span of 2 others. (Contributed by NM, 24-Apr-2015)

Ref Expression
Hypotheses dvh3dim.h H = LHyp K
dvh3dim.u U = DVecH K W
dvh3dim.v V = Base U
dvh3dim.n N = LSpan U
dvh3dim.k φ K HL W H
dvh3dim.x φ X V
dvh3dim.y φ Y V
Assertion dvh3dim φ z V ¬ z N X Y

Proof

Step Hyp Ref Expression
1 dvh3dim.h H = LHyp K
2 dvh3dim.u U = DVecH K W
3 dvh3dim.v V = Base U
4 dvh3dim.n N = LSpan U
5 dvh3dim.k φ K HL W H
6 dvh3dim.x φ X V
7 dvh3dim.y φ Y V
8 1 2 3 4 5 7 dvh2dim φ z V ¬ z N Y
9 8 adantr φ X = 0 U z V ¬ z N Y
10 prcom X Y = Y X
11 preq2 X = 0 U Y X = Y 0 U
12 10 11 syl5eq X = 0 U X Y = Y 0 U
13 12 fveq2d X = 0 U N X Y = N Y 0 U
14 eqid 0 U = 0 U
15 1 2 5 dvhlmod φ U LMod
16 3 14 4 15 7 lsppr0 φ N Y 0 U = N Y
17 13 16 sylan9eqr φ X = 0 U N X Y = N Y
18 17 eleq2d φ X = 0 U z N X Y z N Y
19 18 notbid φ X = 0 U ¬ z N X Y ¬ z N Y
20 19 rexbidv φ X = 0 U z V ¬ z N X Y z V ¬ z N Y
21 9 20 mpbird φ X = 0 U z V ¬ z N X Y
22 1 2 3 4 5 6 dvh2dim φ z V ¬ z N X
23 22 adantr φ Y = 0 U z V ¬ z N X
24 preq2 Y = 0 U X Y = X 0 U
25 24 fveq2d Y = 0 U N X Y = N X 0 U
26 3 14 4 15 6 lsppr0 φ N X 0 U = N X
27 25 26 sylan9eqr φ Y = 0 U N X Y = N X
28 27 eleq2d φ Y = 0 U z N X Y z N X
29 28 notbid φ Y = 0 U ¬ z N X Y ¬ z N X
30 29 rexbidv φ Y = 0 U z V ¬ z N X Y z V ¬ z N X
31 23 30 mpbird φ Y = 0 U z V ¬ z N X Y
32 5 adantr φ X 0 U Y 0 U K HL W H
33 6 adantr φ X 0 U Y 0 U X V
34 7 adantr φ X 0 U Y 0 U Y V
35 simprl φ X 0 U Y 0 U X 0 U
36 simprr φ X 0 U Y 0 U Y 0 U
37 1 2 3 4 32 33 34 14 35 36 dvhdimlem φ X 0 U Y 0 U z V ¬ z N X Y
38 21 31 37 pm2.61da2ne φ z V ¬ z N X Y