Metamath Proof Explorer


Theorem dvhfvadd

Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013) (Revised by Mario Carneiro, 23-Jun-2014)

Ref Expression
Hypotheses dvhfvadd.h H = LHyp K
dvhfvadd.t T = LTrn K W
dvhfvadd.e E = TEndo K W
dvhfvadd.u U = DVecH K W
dvhfvadd.f D = Scalar U
dvhfvadd.p ˙ = + D
dvhfvadd.a ˙ = f T × E , g T × E 1 st f 1 st g 2 nd f ˙ 2 nd g
dvhfvadd.s + ˙ = + U
Assertion dvhfvadd K HL W H + ˙ = ˙

Proof

Step Hyp Ref Expression
1 dvhfvadd.h H = LHyp K
2 dvhfvadd.t T = LTrn K W
3 dvhfvadd.e E = TEndo K W
4 dvhfvadd.u U = DVecH K W
5 dvhfvadd.f D = Scalar U
6 dvhfvadd.p ˙ = + D
7 dvhfvadd.a ˙ = f T × E , g T × E 1 st f 1 st g 2 nd f ˙ 2 nd g
8 dvhfvadd.s + ˙ = + U
9 eqid EDRing K W = EDRing K W
10 1 2 3 9 4 dvhset K HL W H U = Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx EDRing K W ndx s E , f T × E s 1 st f s 2 nd f
11 10 fveq2d K HL W H + U = + Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx EDRing K W ndx s E , f T × E s 1 st f s 2 nd f
12 1 9 4 5 dvhsca K HL W H D = EDRing K W
13 12 fveq2d K HL W H + D = + EDRing K W
14 6 13 syl5eq K HL W H ˙ = + EDRing K W
15 14 oveqd K HL W H 2 nd f ˙ 2 nd g = 2 nd f + EDRing K W 2 nd g
16 15 3ad2ant1 K HL W H f T × E g T × E 2 nd f ˙ 2 nd g = 2 nd f + EDRing K W 2 nd g
17 xp2nd f T × E 2 nd f E
18 xp2nd g T × E 2 nd g E
19 17 18 anim12i f T × E g T × E 2 nd f E 2 nd g E
20 eqid + EDRing K W = + EDRing K W
21 1 2 3 9 20 erngplus K HL W H 2 nd f E 2 nd g E 2 nd f + EDRing K W 2 nd g = h T 2 nd f h 2 nd g h
22 19 21 sylan2 K HL W H f T × E g T × E 2 nd f + EDRing K W 2 nd g = h T 2 nd f h 2 nd g h
23 22 3impb K HL W H f T × E g T × E 2 nd f + EDRing K W 2 nd g = h T 2 nd f h 2 nd g h
24 16 23 eqtrd K HL W H f T × E g T × E 2 nd f ˙ 2 nd g = h T 2 nd f h 2 nd g h
25 24 opeq2d K HL W H f T × E g T × E 1 st f 1 st g 2 nd f ˙ 2 nd g = 1 st f 1 st g h T 2 nd f h 2 nd g h
26 25 mpoeq3dva K HL W H f T × E , g T × E 1 st f 1 st g 2 nd f ˙ 2 nd g = f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h
27 2 fvexi T V
28 3 fvexi E V
29 27 28 xpex T × E V
30 29 29 mpoex f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h V
31 eqid Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx EDRing K W ndx s E , f T × E s 1 st f s 2 nd f = Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx EDRing K W ndx s E , f T × E s 1 st f s 2 nd f
32 31 lmodplusg f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h V f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h = + Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx EDRing K W ndx s E , f T × E s 1 st f s 2 nd f
33 30 32 ax-mp f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h = + Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx EDRing K W ndx s E , f T × E s 1 st f s 2 nd f
34 26 33 eqtr2di K HL W H + Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx EDRing K W ndx s E , f T × E s 1 st f s 2 nd f = f T × E , g T × E 1 st f 1 st g 2 nd f ˙ 2 nd g
35 11 34 eqtrd K HL W H + U = f T × E , g T × E 1 st f 1 st g 2 nd f ˙ 2 nd g
36 35 8 7 3eqtr4g K HL W H + ˙ = ˙