Metamath Proof Explorer


Theorem dvhfvadd

Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013) (Revised by Mario Carneiro, 23-Jun-2014)

Ref Expression
Hypotheses dvhfvadd.h H=LHypK
dvhfvadd.t T=LTrnKW
dvhfvadd.e E=TEndoKW
dvhfvadd.u U=DVecHKW
dvhfvadd.f D=ScalarU
dvhfvadd.p ˙=+D
dvhfvadd.a ˙=fT×E,gT×E1stf1stg2ndf˙2ndg
dvhfvadd.s +˙=+U
Assertion dvhfvadd KHLWH+˙=˙

Proof

Step Hyp Ref Expression
1 dvhfvadd.h H=LHypK
2 dvhfvadd.t T=LTrnKW
3 dvhfvadd.e E=TEndoKW
4 dvhfvadd.u U=DVecHKW
5 dvhfvadd.f D=ScalarU
6 dvhfvadd.p ˙=+D
7 dvhfvadd.a ˙=fT×E,gT×E1stf1stg2ndf˙2ndg
8 dvhfvadd.s +˙=+U
9 eqid EDRingKW=EDRingKW
10 1 2 3 9 4 dvhset KHLWHU=BasendxT×E+ndxfT×E,gT×E1stf1stghT2ndfh2ndghScalarndxEDRingKWndxsE,fT×Es1stfs2ndf
11 10 fveq2d KHLWH+U=+BasendxT×E+ndxfT×E,gT×E1stf1stghT2ndfh2ndghScalarndxEDRingKWndxsE,fT×Es1stfs2ndf
12 1 9 4 5 dvhsca KHLWHD=EDRingKW
13 12 fveq2d KHLWH+D=+EDRingKW
14 6 13 eqtrid KHLWH˙=+EDRingKW
15 14 oveqd KHLWH2ndf˙2ndg=2ndf+EDRingKW2ndg
16 15 3ad2ant1 KHLWHfT×EgT×E2ndf˙2ndg=2ndf+EDRingKW2ndg
17 xp2nd fT×E2ndfE
18 xp2nd gT×E2ndgE
19 17 18 anim12i fT×EgT×E2ndfE2ndgE
20 eqid +EDRingKW=+EDRingKW
21 1 2 3 9 20 erngplus KHLWH2ndfE2ndgE2ndf+EDRingKW2ndg=hT2ndfh2ndgh
22 19 21 sylan2 KHLWHfT×EgT×E2ndf+EDRingKW2ndg=hT2ndfh2ndgh
23 22 3impb KHLWHfT×EgT×E2ndf+EDRingKW2ndg=hT2ndfh2ndgh
24 16 23 eqtrd KHLWHfT×EgT×E2ndf˙2ndg=hT2ndfh2ndgh
25 24 opeq2d KHLWHfT×EgT×E1stf1stg2ndf˙2ndg=1stf1stghT2ndfh2ndgh
26 25 mpoeq3dva KHLWHfT×E,gT×E1stf1stg2ndf˙2ndg=fT×E,gT×E1stf1stghT2ndfh2ndgh
27 2 fvexi TV
28 3 fvexi EV
29 27 28 xpex T×EV
30 29 29 mpoex fT×E,gT×E1stf1stghT2ndfh2ndghV
31 eqid BasendxT×E+ndxfT×E,gT×E1stf1stghT2ndfh2ndghScalarndxEDRingKWndxsE,fT×Es1stfs2ndf=BasendxT×E+ndxfT×E,gT×E1stf1stghT2ndfh2ndghScalarndxEDRingKWndxsE,fT×Es1stfs2ndf
32 31 lmodplusg fT×E,gT×E1stf1stghT2ndfh2ndghVfT×E,gT×E1stf1stghT2ndfh2ndgh=+BasendxT×E+ndxfT×E,gT×E1stf1stghT2ndfh2ndghScalarndxEDRingKWndxsE,fT×Es1stfs2ndf
33 30 32 ax-mp fT×E,gT×E1stf1stghT2ndfh2ndgh=+BasendxT×E+ndxfT×E,gT×E1stf1stghT2ndfh2ndghScalarndxEDRingKWndxsE,fT×Es1stfs2ndf
34 26 33 eqtr2di KHLWH+BasendxT×E+ndxfT×E,gT×E1stf1stghT2ndfh2ndghScalarndxEDRingKWndxsE,fT×Es1stfs2ndf=fT×E,gT×E1stf1stg2ndf˙2ndg
35 11 34 eqtrd KHLWH+U=fT×E,gT×E1stf1stg2ndf˙2ndg
36 35 8 7 3eqtr4g KHLWH+˙=˙