Metamath Proof Explorer


Theorem dvhopN

Description: Decompose a DVecH vector expressed as an ordered pair into the sum of two components, the first from the translation group vector base of DVecA and the other from the one-dimensional vector subspace E . Part of Lemma M of Crawley p. 121, line 18. We represent their e, sigma, f by ` <. (I |`` B ) , ( I |`T ) >. , U , <. F , O >. . We swapped the order of vector sum (their juxtaposition i.e. composition) to show <. F , O >. first. Note that O and ` (I |`T ) are the zero and one of the division ring E , and ` ( I |`B ) is the zero of the translation group. S is the scalar product. (Contributed by NM, 21-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dvhop.b B = Base K
dvhop.h H = LHyp K
dvhop.t T = LTrn K W
dvhop.e E = TEndo K W
dvhop.p P = a E , b E c T a c b c
dvhop.a A = f T × E , g T × E 1 st f 1 st g 2 nd f P 2 nd g
dvhop.s S = s E , f T × E s 1 st f s 2 nd f
dvhop.o O = c T I B
Assertion dvhopN K HL W H F T U E F U = F O A U S I B I T

Proof

Step Hyp Ref Expression
1 dvhop.b B = Base K
2 dvhop.h H = LHyp K
3 dvhop.t T = LTrn K W
4 dvhop.e E = TEndo K W
5 dvhop.p P = a E , b E c T a c b c
6 dvhop.a A = f T × E , g T × E 1 st f 1 st g 2 nd f P 2 nd g
7 dvhop.s S = s E , f T × E s 1 st f s 2 nd f
8 dvhop.o O = c T I B
9 simprr K HL W H F T U E U E
10 1 2 3 idltrn K HL W H I B T
11 10 adantr K HL W H F T U E I B T
12 2 3 4 tendoidcl K HL W H I T E
13 12 adantr K HL W H F T U E I T E
14 7 dvhopspN U E I B T I T E U S I B I T = U I B U I T
15 9 11 13 14 syl12anc K HL W H F T U E U S I B I T = U I B U I T
16 1 2 4 tendoid K HL W H U E U I B = I B
17 16 adantrl K HL W H F T U E U I B = I B
18 2 3 4 tendo1mulr K HL W H U E U I T = U
19 18 adantrl K HL W H F T U E U I T = U
20 17 19 opeq12d K HL W H F T U E U I B U I T = I B U
21 15 20 eqtrd K HL W H F T U E U S I B I T = I B U
22 21 oveq2d K HL W H F T U E F O A U S I B I T = F O A I B U
23 simprl K HL W H F T U E F T
24 1 2 3 4 8 tendo0cl K HL W H O E
25 24 adantr K HL W H F T U E O E
26 6 dvhopaddN F T O E I B T U E F O A I B U = F I B O P U
27 23 25 11 9 26 syl22anc K HL W H F T U E F O A I B U = F I B O P U
28 1 2 3 ltrn1o K HL W H F T F : B 1-1 onto B
29 28 adantrr K HL W H F T U E F : B 1-1 onto B
30 f1of F : B 1-1 onto B F : B B
31 fcoi1 F : B B F I B = F
32 29 30 31 3syl K HL W H F T U E F I B = F
33 1 2 3 4 8 5 tendo0pl K HL W H U E O P U = U
34 33 adantrl K HL W H F T U E O P U = U
35 32 34 opeq12d K HL W H F T U E F I B O P U = F U
36 22 27 35 3eqtrrd K HL W H F T U E F U = F O A U S I B I T