Description: Assuming the operation F is commutative, show that the relation .~ , specified by the first hypothesis, is symmetric. (Contributed by NM, 27-Aug-1995) (Revised by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ecopopr.1 | |
|
ecopopr.com | |
||
Assertion | ecopovsym | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecopopr.1 | |
|
2 | ecopopr.com | |
|
3 | opabssxp | |
|
4 | 1 3 | eqsstri | |
5 | 4 | brel | |
6 | eqid | |
|
7 | breq1 | |
|
8 | breq2 | |
|
9 | 7 8 | bibi12d | |
10 | breq2 | |
|
11 | breq1 | |
|
12 | 10 11 | bibi12d | |
13 | 1 | ecopoveq | |
14 | vex | |
|
15 | vex | |
|
16 | 14 15 2 | caovcom | |
17 | vex | |
|
18 | vex | |
|
19 | 17 18 2 | caovcom | |
20 | 16 19 | eqeq12i | |
21 | eqcom | |
|
22 | 20 21 | bitri | |
23 | 13 22 | bitrdi | |
24 | 1 | ecopoveq | |
25 | 24 | ancoms | |
26 | 23 25 | bitr4d | |
27 | 6 9 12 26 | 2optocl | |
28 | 5 27 | syl | |
29 | 28 | ibi | |