Metamath Proof Explorer


Theorem ecopovsym

Description: Assuming the operation F is commutative, show that the relation .~ , specified by the first hypothesis, is symmetric. (Contributed by NM, 27-Aug-1995) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses ecopopr.1 ˙=xy|xS×SyS×Szwvux=zwy=vuz+˙u=w+˙v
ecopopr.com x+˙y=y+˙x
Assertion ecopovsym A˙BB˙A

Proof

Step Hyp Ref Expression
1 ecopopr.1 ˙=xy|xS×SyS×Szwvux=zwy=vuz+˙u=w+˙v
2 ecopopr.com x+˙y=y+˙x
3 opabssxp xy|xS×SyS×Szwvux=zwy=vuz+˙u=w+˙vS×S×S×S
4 1 3 eqsstri ˙S×S×S×S
5 4 brel A˙BAS×SBS×S
6 eqid S×S=S×S
7 breq1 fg=Afg˙htA˙ht
8 breq2 fg=Aht˙fght˙A
9 7 8 bibi12d fg=Afg˙htht˙fgA˙htht˙A
10 breq2 ht=BA˙htA˙B
11 breq1 ht=Bht˙AB˙A
12 10 11 bibi12d ht=BA˙htht˙AA˙BB˙A
13 1 ecopoveq fSgShStSfg˙htf+˙t=g+˙h
14 vex fV
15 vex tV
16 14 15 2 caovcom f+˙t=t+˙f
17 vex gV
18 vex hV
19 17 18 2 caovcom g+˙h=h+˙g
20 16 19 eqeq12i f+˙t=g+˙ht+˙f=h+˙g
21 eqcom t+˙f=h+˙gh+˙g=t+˙f
22 20 21 bitri f+˙t=g+˙hh+˙g=t+˙f
23 13 22 bitrdi fSgShStSfg˙hth+˙g=t+˙f
24 1 ecopoveq hStSfSgSht˙fgh+˙g=t+˙f
25 24 ancoms fSgShStSht˙fgh+˙g=t+˙f
26 23 25 bitr4d fSgShStSfg˙htht˙fg
27 6 9 12 26 2optocl AS×SBS×SA˙BB˙A
28 5 27 syl A˙BA˙BB˙A
29 28 ibi A˙BB˙A