Metamath Proof Explorer


Theorem edgupgr

Description: Properties of an edge of a pseudograph. (Contributed by AV, 8-Nov-2020)

Ref Expression
Assertion edgupgr GUPGraphEEdgGE𝒫VtxGEE2

Proof

Step Hyp Ref Expression
1 edgval EdgG=raniEdgG
2 1 a1i GUPGraphEdgG=raniEdgG
3 2 eleq2d GUPGraphEEdgGEraniEdgG
4 eqid VtxG=VtxG
5 eqid iEdgG=iEdgG
6 4 5 upgrf GUPGraphiEdgG:domiEdgGx𝒫VtxG|x2
7 6 frnd GUPGraphraniEdgGx𝒫VtxG|x2
8 7 sseld GUPGraphEraniEdgGEx𝒫VtxG|x2
9 fveq2 x=Ex=E
10 9 breq1d x=Ex2E2
11 10 elrab Ex𝒫VtxG|x2E𝒫VtxGE2
12 eldifsn E𝒫VtxGE𝒫VtxGE
13 12 biimpi E𝒫VtxGE𝒫VtxGE
14 13 anim1i E𝒫VtxGE2E𝒫VtxGEE2
15 df-3an E𝒫VtxGEE2E𝒫VtxGEE2
16 14 15 sylibr E𝒫VtxGE2E𝒫VtxGEE2
17 16 a1i GUPGraphE𝒫VtxGE2E𝒫VtxGEE2
18 11 17 biimtrid GUPGraphEx𝒫VtxG|x2E𝒫VtxGEE2
19 8 18 syld GUPGraphEraniEdgGE𝒫VtxGEE2
20 3 19 sylbid GUPGraphEEdgGE𝒫VtxGEE2
21 20 imp GUPGraphEEdgGE𝒫VtxGEE2