| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eengbas |  | 
						
							| 2 | 1 | eqcomd |  | 
						
							| 3 |  | oveq2 |  | 
						
							| 4 | 3 | oveq2d |  | 
						
							| 5 |  | df-ee |  | 
						
							| 6 |  | ovex |  | 
						
							| 7 | 4 5 6 | fvmpt |  | 
						
							| 8 | 2 7 | eqtrd |  | 
						
							| 9 | 2 | ancli |  | 
						
							| 10 | 9 8 | jca |  | 
						
							| 11 |  | difeq1 |  | 
						
							| 12 | 11 | ad2antlr |  | 
						
							| 13 | 10 12 | sylan |  | 
						
							| 14 | 8 | adantr |  | 
						
							| 15 |  | simpll |  | 
						
							| 16 | 8 | eleq2d |  | 
						
							| 17 | 16 | biimpcd |  | 
						
							| 18 | 17 | adantr |  | 
						
							| 19 | 18 | impcom |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 | 8 | difeq1d |  | 
						
							| 22 | 21 | eleq2d |  | 
						
							| 23 | 22 | biimpd |  | 
						
							| 24 | 23 | adantld |  | 
						
							| 25 | 24 | imp |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 | 14 | eleq2d |  | 
						
							| 28 | 27 | biimpa |  | 
						
							| 29 |  | eenglngeehlnmlem1 |  | 
						
							| 30 |  | eenglngeehlnmlem2 |  | 
						
							| 31 | 29 30 | impbid |  | 
						
							| 32 | 15 20 26 28 31 | syl31anc |  | 
						
							| 33 | 14 32 | rabeqbidva |  | 
						
							| 34 | 8 13 33 | mpoeq123dva |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 |  | eqid |  | 
						
							| 37 | 35 36 | elntg2 |  | 
						
							| 38 |  | nnnn0 |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 | 39 | ehlval |  | 
						
							| 41 | 38 40 | syl |  | 
						
							| 42 | 41 | fveq2d |  | 
						
							| 43 |  | fzfid |  | 
						
							| 44 |  | eqid |  | 
						
							| 45 |  | eqid |  | 
						
							| 46 |  | eqid |  | 
						
							| 47 | 44 45 46 | rrxlinesc |  | 
						
							| 48 | 43 47 | syl |  | 
						
							| 49 | 42 48 | eqtrd |  | 
						
							| 50 | 34 37 49 | 3eqtr4d |  |