Metamath Proof Explorer


Theorem eenglngeehlnm

Description: The line definition in the Tarski structure for the Euclidean geometry (see elntg ) corresponds to the definition of lines passing through two different points in a left module (see rrxlines ). (Contributed by AV, 16-Feb-2023)

Ref Expression
Assertion eenglngeehlnm N Line 𝒢 𝔼 𝒢 N = Line M 𝔼 hil N

Proof

Step Hyp Ref Expression
1 eengbas N 𝔼 N = Base 𝔼 𝒢 N
2 1 eqcomd N Base 𝔼 𝒢 N = 𝔼 N
3 oveq2 n = N 1 n = 1 N
4 3 oveq2d n = N 1 n = 1 N
5 df-ee 𝔼 = n 1 n
6 ovex 1 N V
7 4 5 6 fvmpt N 𝔼 N = 1 N
8 2 7 eqtrd N Base 𝔼 𝒢 N = 1 N
9 2 ancli N N Base 𝔼 𝒢 N = 𝔼 N
10 9 8 jca N N Base 𝔼 𝒢 N = 𝔼 N Base 𝔼 𝒢 N = 1 N
11 difeq1 Base 𝔼 𝒢 N = 1 N Base 𝔼 𝒢 N x = 1 N x
12 11 ad2antlr N Base 𝔼 𝒢 N = 𝔼 N Base 𝔼 𝒢 N = 1 N x Base 𝔼 𝒢 N Base 𝔼 𝒢 N x = 1 N x
13 10 12 sylan N x Base 𝔼 𝒢 N Base 𝔼 𝒢 N x = 1 N x
14 8 adantr N x Base 𝔼 𝒢 N y Base 𝔼 𝒢 N x Base 𝔼 𝒢 N = 1 N
15 simpll N x Base 𝔼 𝒢 N y Base 𝔼 𝒢 N x p Base 𝔼 𝒢 N N
16 8 eleq2d N x Base 𝔼 𝒢 N x 1 N
17 16 biimpcd x Base 𝔼 𝒢 N N x 1 N
18 17 adantr x Base 𝔼 𝒢 N y Base 𝔼 𝒢 N x N x 1 N
19 18 impcom N x Base 𝔼 𝒢 N y Base 𝔼 𝒢 N x x 1 N
20 19 adantr N x Base 𝔼 𝒢 N y Base 𝔼 𝒢 N x p Base 𝔼 𝒢 N x 1 N
21 8 difeq1d N Base 𝔼 𝒢 N x = 1 N x
22 21 eleq2d N y Base 𝔼 𝒢 N x y 1 N x
23 22 biimpd N y Base 𝔼 𝒢 N x y 1 N x
24 23 adantld N x Base 𝔼 𝒢 N y Base 𝔼 𝒢 N x y 1 N x
25 24 imp N x Base 𝔼 𝒢 N y Base 𝔼 𝒢 N x y 1 N x
26 25 adantr N x Base 𝔼 𝒢 N y Base 𝔼 𝒢 N x p Base 𝔼 𝒢 N y 1 N x
27 14 eleq2d N x Base 𝔼 𝒢 N y Base 𝔼 𝒢 N x p Base 𝔼 𝒢 N p 1 N
28 27 biimpa N x Base 𝔼 𝒢 N y Base 𝔼 𝒢 N x p Base 𝔼 𝒢 N p 1 N
29 eenglngeehlnmlem1 N x 1 N y 1 N x p 1 N z 0 1 i 1 N p i = 1 z x i + z y i v 0 1 i 1 N x i = 1 v p i + v y i w 0 1 i 1 N y i = 1 w x i + w p i t i 1 N p i = 1 t x i + t y i
30 eenglngeehlnmlem2 N x 1 N y 1 N x p 1 N t i 1 N p i = 1 t x i + t y i z 0 1 i 1 N p i = 1 z x i + z y i v 0 1 i 1 N x i = 1 v p i + v y i w 0 1 i 1 N y i = 1 w x i + w p i
31 29 30 impbid N x 1 N y 1 N x p 1 N z 0 1 i 1 N p i = 1 z x i + z y i v 0 1 i 1 N x i = 1 v p i + v y i w 0 1 i 1 N y i = 1 w x i + w p i t i 1 N p i = 1 t x i + t y i
32 15 20 26 28 31 syl31anc N x Base 𝔼 𝒢 N y Base 𝔼 𝒢 N x p Base 𝔼 𝒢 N z 0 1 i 1 N p i = 1 z x i + z y i v 0 1 i 1 N x i = 1 v p i + v y i w 0 1 i 1 N y i = 1 w x i + w p i t i 1 N p i = 1 t x i + t y i
33 14 32 rabeqbidva N x Base 𝔼 𝒢 N y Base 𝔼 𝒢 N x p Base 𝔼 𝒢 N | z 0 1 i 1 N p i = 1 z x i + z y i v 0 1 i 1 N x i = 1 v p i + v y i w 0 1 i 1 N y i = 1 w x i + w p i = p 1 N | t i 1 N p i = 1 t x i + t y i
34 8 13 33 mpoeq123dva N x Base 𝔼 𝒢 N , y Base 𝔼 𝒢 N x p Base 𝔼 𝒢 N | z 0 1 i 1 N p i = 1 z x i + z y i v 0 1 i 1 N x i = 1 v p i + v y i w 0 1 i 1 N y i = 1 w x i + w p i = x 1 N , y 1 N x p 1 N | t i 1 N p i = 1 t x i + t y i
35 eqid Base 𝔼 𝒢 N = Base 𝔼 𝒢 N
36 eqid 1 N = 1 N
37 35 36 elntg2 N Line 𝒢 𝔼 𝒢 N = x Base 𝔼 𝒢 N , y Base 𝔼 𝒢 N x p Base 𝔼 𝒢 N | z 0 1 i 1 N p i = 1 z x i + z y i v 0 1 i 1 N x i = 1 v p i + v y i w 0 1 i 1 N y i = 1 w x i + w p i
38 nnnn0 N N 0
39 eqid 𝔼 hil N = 𝔼 hil N
40 39 ehlval N 0 𝔼 hil N = 1 N
41 38 40 syl N 𝔼 hil N = 1 N
42 41 fveq2d N Line M 𝔼 hil N = Line M 1 N
43 fzfid N 1 N Fin
44 eqid 1 N = 1 N
45 eqid 1 N = 1 N
46 eqid Line M 1 N = Line M 1 N
47 44 45 46 rrxlinesc 1 N Fin Line M 1 N = x 1 N , y 1 N x p 1 N | t i 1 N p i = 1 t x i + t y i
48 43 47 syl N Line M 1 N = x 1 N , y 1 N x p 1 N | t i 1 N p i = 1 t x i + t y i
49 42 48 eqtrd N Line M 𝔼 hil N = x 1 N , y 1 N x p 1 N | t i 1 N p i = 1 t x i + t y i
50 34 37 49 3eqtr4d N Line 𝒢 𝔼 𝒢 N = Line M 𝔼 hil N