Metamath Proof Explorer


Theorem eenglngeehlnm

Description: The line definition in the Tarski structure for the Euclidean geometry (see elntg ) corresponds to the definition of lines passing through two different points in a left module (see rrxlines ). (Contributed by AV, 16-Feb-2023)

Ref Expression
Assertion eenglngeehlnm NLine𝒢𝔼𝒢N=LineM𝔼hilN

Proof

Step Hyp Ref Expression
1 eengbas N𝔼N=Base𝔼𝒢N
2 1 eqcomd NBase𝔼𝒢N=𝔼N
3 oveq2 n=N1n=1N
4 3 oveq2d n=N1n=1N
5 df-ee 𝔼=n1n
6 ovex 1NV
7 4 5 6 fvmpt N𝔼N=1N
8 2 7 eqtrd NBase𝔼𝒢N=1N
9 2 ancli NNBase𝔼𝒢N=𝔼N
10 9 8 jca NNBase𝔼𝒢N=𝔼NBase𝔼𝒢N=1N
11 difeq1 Base𝔼𝒢N=1NBase𝔼𝒢Nx=1Nx
12 11 ad2antlr NBase𝔼𝒢N=𝔼NBase𝔼𝒢N=1NxBase𝔼𝒢NBase𝔼𝒢Nx=1Nx
13 10 12 sylan NxBase𝔼𝒢NBase𝔼𝒢Nx=1Nx
14 8 adantr NxBase𝔼𝒢NyBase𝔼𝒢NxBase𝔼𝒢N=1N
15 simpll NxBase𝔼𝒢NyBase𝔼𝒢NxpBase𝔼𝒢NN
16 8 eleq2d NxBase𝔼𝒢Nx1N
17 16 biimpcd xBase𝔼𝒢NNx1N
18 17 adantr xBase𝔼𝒢NyBase𝔼𝒢NxNx1N
19 18 impcom NxBase𝔼𝒢NyBase𝔼𝒢Nxx1N
20 19 adantr NxBase𝔼𝒢NyBase𝔼𝒢NxpBase𝔼𝒢Nx1N
21 8 difeq1d NBase𝔼𝒢Nx=1Nx
22 21 eleq2d NyBase𝔼𝒢Nxy1Nx
23 22 biimpd NyBase𝔼𝒢Nxy1Nx
24 23 adantld NxBase𝔼𝒢NyBase𝔼𝒢Nxy1Nx
25 24 imp NxBase𝔼𝒢NyBase𝔼𝒢Nxy1Nx
26 25 adantr NxBase𝔼𝒢NyBase𝔼𝒢NxpBase𝔼𝒢Ny1Nx
27 14 eleq2d NxBase𝔼𝒢NyBase𝔼𝒢NxpBase𝔼𝒢Np1N
28 27 biimpa NxBase𝔼𝒢NyBase𝔼𝒢NxpBase𝔼𝒢Np1N
29 eenglngeehlnmlem1 Nx1Ny1Nxp1Nz01i1Npi=1zxi+zyiv01i1Nxi=1vpi+vyiw01i1Nyi=1wxi+wpiti1Npi=1txi+tyi
30 eenglngeehlnmlem2 Nx1Ny1Nxp1Nti1Npi=1txi+tyiz01i1Npi=1zxi+zyiv01i1Nxi=1vpi+vyiw01i1Nyi=1wxi+wpi
31 29 30 impbid Nx1Ny1Nxp1Nz01i1Npi=1zxi+zyiv01i1Nxi=1vpi+vyiw01i1Nyi=1wxi+wpiti1Npi=1txi+tyi
32 15 20 26 28 31 syl31anc NxBase𝔼𝒢NyBase𝔼𝒢NxpBase𝔼𝒢Nz01i1Npi=1zxi+zyiv01i1Nxi=1vpi+vyiw01i1Nyi=1wxi+wpiti1Npi=1txi+tyi
33 14 32 rabeqbidva NxBase𝔼𝒢NyBase𝔼𝒢NxpBase𝔼𝒢N|z01i1Npi=1zxi+zyiv01i1Nxi=1vpi+vyiw01i1Nyi=1wxi+wpi=p1N|ti1Npi=1txi+tyi
34 8 13 33 mpoeq123dva NxBase𝔼𝒢N,yBase𝔼𝒢NxpBase𝔼𝒢N|z01i1Npi=1zxi+zyiv01i1Nxi=1vpi+vyiw01i1Nyi=1wxi+wpi=x1N,y1Nxp1N|ti1Npi=1txi+tyi
35 eqid Base𝔼𝒢N=Base𝔼𝒢N
36 eqid 1N=1N
37 35 36 elntg2 NLine𝒢𝔼𝒢N=xBase𝔼𝒢N,yBase𝔼𝒢NxpBase𝔼𝒢N|z01i1Npi=1zxi+zyiv01i1Nxi=1vpi+vyiw01i1Nyi=1wxi+wpi
38 nnnn0 NN0
39 eqid 𝔼hilN=𝔼hilN
40 39 ehlval N0𝔼hilN=msup
41 38 40 syl N𝔼hilN=msup
42 41 fveq2d NLineM𝔼hilN=LineMmsup
43 fzfid N1NFin
44 eqid msup=msup
45 eqid 1N=1N
46 eqid LineMmsup=LineMmsup
47 44 45 46 rrxlinesc 1NFinLineMmsup=x1N,y1Nxp1N|ti1Npi=1txi+tyi
48 43 47 syl NLineMmsup=x1N,y1Nxp1N|ti1Npi=1txi+tyi
49 42 48 eqtrd NLineM𝔼hilN=x1N,y1Nxp1N|ti1Npi=1txi+tyi
50 34 37 49 3eqtr4d NLine𝒢𝔼𝒢N=LineM𝔼hilN