Step |
Hyp |
Ref |
Expression |
1 |
|
eengbas |
|
2 |
1
|
eqcomd |
|
3 |
|
oveq2 |
|
4 |
3
|
oveq2d |
|
5 |
|
df-ee |
|
6 |
|
ovex |
|
7 |
4 5 6
|
fvmpt |
|
8 |
2 7
|
eqtrd |
|
9 |
2
|
ancli |
|
10 |
9 8
|
jca |
|
11 |
|
difeq1 |
|
12 |
11
|
ad2antlr |
|
13 |
10 12
|
sylan |
|
14 |
8
|
adantr |
|
15 |
|
simpll |
|
16 |
8
|
eleq2d |
|
17 |
16
|
biimpcd |
|
18 |
17
|
adantr |
|
19 |
18
|
impcom |
|
20 |
19
|
adantr |
|
21 |
8
|
difeq1d |
|
22 |
21
|
eleq2d |
|
23 |
22
|
biimpd |
|
24 |
23
|
adantld |
|
25 |
24
|
imp |
|
26 |
25
|
adantr |
|
27 |
14
|
eleq2d |
|
28 |
27
|
biimpa |
|
29 |
|
eenglngeehlnmlem1 |
|
30 |
|
eenglngeehlnmlem2 |
|
31 |
29 30
|
impbid |
|
32 |
15 20 26 28 31
|
syl31anc |
|
33 |
14 32
|
rabeqbidva |
|
34 |
8 13 33
|
mpoeq123dva |
|
35 |
|
eqid |
|
36 |
|
eqid |
|
37 |
35 36
|
elntg2 |
|
38 |
|
nnnn0 |
|
39 |
|
eqid |
|
40 |
39
|
ehlval |
|
41 |
38 40
|
syl |
|
42 |
41
|
fveq2d |
|
43 |
|
fzfid |
|
44 |
|
eqid |
|
45 |
|
eqid |
|
46 |
|
eqid |
|
47 |
44 45 46
|
rrxlinesc |
|
48 |
43 47
|
syl |
|
49 |
42 48
|
eqtrd |
|
50 |
34 37 49
|
3eqtr4d |
|