Description: The line definition in the Tarski structure for the Euclidean geometry (see elntg ) corresponds to the definition of lines passing through two different points in a left module (see rrxlines ). (Contributed by AV, 16-Feb-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | eenglngeehlnm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eengbas | |
|
2 | 1 | eqcomd | |
3 | oveq2 | |
|
4 | 3 | oveq2d | |
5 | df-ee | |
|
6 | ovex | |
|
7 | 4 5 6 | fvmpt | |
8 | 2 7 | eqtrd | |
9 | 2 | ancli | |
10 | 9 8 | jca | |
11 | difeq1 | |
|
12 | 11 | ad2antlr | |
13 | 10 12 | sylan | |
14 | 8 | adantr | |
15 | simpll | |
|
16 | 8 | eleq2d | |
17 | 16 | biimpcd | |
18 | 17 | adantr | |
19 | 18 | impcom | |
20 | 19 | adantr | |
21 | 8 | difeq1d | |
22 | 21 | eleq2d | |
23 | 22 | biimpd | |
24 | 23 | adantld | |
25 | 24 | imp | |
26 | 25 | adantr | |
27 | 14 | eleq2d | |
28 | 27 | biimpa | |
29 | eenglngeehlnmlem1 | |
|
30 | eenglngeehlnmlem2 | |
|
31 | 29 30 | impbid | |
32 | 15 20 26 28 31 | syl31anc | |
33 | 14 32 | rabeqbidva | |
34 | 8 13 33 | mpoeq123dva | |
35 | eqid | |
|
36 | eqid | |
|
37 | 35 36 | elntg2 | |
38 | nnnn0 | |
|
39 | eqid | |
|
40 | 39 | ehlval | |
41 | 38 40 | syl | |
42 | 41 | fveq2d | |
43 | fzfid | |
|
44 | eqid | |
|
45 | eqid | |
|
46 | eqid | |
|
47 | 44 45 46 | rrxlinesc | |
48 | 43 47 | syl | |
49 | 42 48 | eqtrd | |
50 | 34 37 49 | 3eqtr4d | |