| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
oveq1d |
|
| 3 |
|
oveq1 |
|
| 4 |
2 3
|
oveq12d |
|
| 5 |
4
|
eqeq2d |
|
| 6 |
5
|
ralbidv |
|
| 7 |
6
|
cbvrexvw |
|
| 8 |
|
unitssre |
|
| 9 |
|
ssrexv |
|
| 10 |
8 9
|
mp1i |
|
| 11 |
7 10
|
biimtrid |
|
| 12 |
|
0re |
|
| 13 |
|
1xr |
|
| 14 |
|
elico2 |
|
| 15 |
12 13 14
|
mp2an |
|
| 16 |
|
simp1 |
|
| 17 |
|
1red |
|
| 18 |
17 16
|
resubcld |
|
| 19 |
|
1cnd |
|
| 20 |
16
|
recnd |
|
| 21 |
|
ltne |
|
| 22 |
21
|
3adant2 |
|
| 23 |
19 20 22
|
subne0d |
|
| 24 |
16 18 23
|
redivcld |
|
| 25 |
15 24
|
sylbi |
|
| 26 |
25
|
ad2antlr |
|
| 27 |
26
|
renegcld |
|
| 28 |
|
oveq2 |
|
| 29 |
28
|
oveq1d |
|
| 30 |
|
oveq1 |
|
| 31 |
29 30
|
oveq12d |
|
| 32 |
31
|
eqeq2d |
|
| 33 |
32
|
ralbidv |
|
| 34 |
33
|
adantl |
|
| 35 |
|
eqcom |
|
| 36 |
|
elmapi |
|
| 37 |
36
|
3ad2ant2 |
|
| 38 |
37
|
ad2antrr |
|
| 39 |
38
|
ffvelcdmda |
|
| 40 |
39
|
recnd |
|
| 41 |
15 16
|
sylbi |
|
| 42 |
41
|
ad2antlr |
|
| 43 |
42
|
recnd |
|
| 44 |
|
eldifi |
|
| 45 |
|
elmapi |
|
| 46 |
44 45
|
syl |
|
| 47 |
46
|
3ad2ant3 |
|
| 48 |
47
|
ad2antrr |
|
| 49 |
48
|
ffvelcdmda |
|
| 50 |
49
|
recnd |
|
| 51 |
43 50
|
mulcld |
|
| 52 |
|
1cnd |
|
| 53 |
52 43
|
subcld |
|
| 54 |
|
elmapi |
|
| 55 |
54
|
ad2antlr |
|
| 56 |
55
|
ffvelcdmda |
|
| 57 |
56
|
recnd |
|
| 58 |
53 57
|
mulcld |
|
| 59 |
40 51 58
|
subadd2d |
|
| 60 |
35 59
|
bitr4id |
|
| 61 |
|
eqcom |
|
| 62 |
40 51
|
subcld |
|
| 63 |
15 22
|
sylbi |
|
| 64 |
63
|
ad2antlr |
|
| 65 |
52 43 64
|
subne0d |
|
| 66 |
62 53 57 65
|
divmuld |
|
| 67 |
61 66
|
bitr4id |
|
| 68 |
|
eqcom |
|
| 69 |
40 51 53 65
|
divsubdird |
|
| 70 |
40 53 65
|
divrec2d |
|
| 71 |
43 50 53 65
|
div23d |
|
| 72 |
70 71
|
oveq12d |
|
| 73 |
69 72
|
eqtrd |
|
| 74 |
73
|
eqeq2d |
|
| 75 |
68 74
|
bitrid |
|
| 76 |
43 53 65
|
divcld |
|
| 77 |
76 50
|
mulneg1d |
|
| 78 |
77
|
eqcomd |
|
| 79 |
78
|
oveq2d |
|
| 80 |
53 65
|
reccld |
|
| 81 |
80 40
|
mulcld |
|
| 82 |
76 50
|
mulcld |
|
| 83 |
81 82
|
negsubd |
|
| 84 |
52 76
|
subnegd |
|
| 85 |
|
muldivdir |
|
| 86 |
52 43 53 65 85
|
syl112anc |
|
| 87 |
53
|
mulridd |
|
| 88 |
87
|
oveq1d |
|
| 89 |
52 43
|
npcand |
|
| 90 |
88 89
|
eqtrd |
|
| 91 |
90
|
oveq1d |
|
| 92 |
84 86 91
|
3eqtr2d |
|
| 93 |
92
|
eqcomd |
|
| 94 |
93
|
oveq1d |
|
| 95 |
94
|
oveq1d |
|
| 96 |
79 83 95
|
3eqtr3d |
|
| 97 |
96
|
eqeq2d |
|
| 98 |
97
|
biimpd |
|
| 99 |
75 98
|
sylbid |
|
| 100 |
67 99
|
sylbid |
|
| 101 |
60 100
|
sylbid |
|
| 102 |
101
|
ralimdva |
|
| 103 |
102
|
imp |
|
| 104 |
27 34 103
|
rspcedvd |
|
| 105 |
104
|
rexlimdva2 |
|
| 106 |
|
0xr |
|
| 107 |
|
1re |
|
| 108 |
|
elioc2 |
|
| 109 |
106 107 108
|
mp2an |
|
| 110 |
|
simp1 |
|
| 111 |
|
gt0ne0 |
|
| 112 |
111
|
3adant3 |
|
| 113 |
110 112
|
rereccld |
|
| 114 |
109 113
|
sylbi |
|
| 115 |
114
|
ad2antlr |
|
| 116 |
|
oveq2 |
|
| 117 |
116
|
oveq1d |
|
| 118 |
|
oveq1 |
|
| 119 |
117 118
|
oveq12d |
|
| 120 |
119
|
eqeq2d |
|
| 121 |
120
|
ralbidv |
|
| 122 |
121
|
adantl |
|
| 123 |
|
eqcom |
|
| 124 |
47
|
ad2antrr |
|
| 125 |
124
|
ffvelcdmda |
|
| 126 |
125
|
recnd |
|
| 127 |
|
1cnd |
|
| 128 |
109 110
|
sylbi |
|
| 129 |
128
|
recnd |
|
| 130 |
129
|
ad2antlr |
|
| 131 |
127 130
|
subcld |
|
| 132 |
37
|
ad2antrr |
|
| 133 |
132
|
ffvelcdmda |
|
| 134 |
133
|
recnd |
|
| 135 |
131 134
|
mulcld |
|
| 136 |
126 135
|
negsubd |
|
| 137 |
131 134
|
mulneg1d |
|
| 138 |
127 130
|
negsubdi2d |
|
| 139 |
138
|
oveq1d |
|
| 140 |
137 139
|
eqtr3d |
|
| 141 |
140
|
oveq2d |
|
| 142 |
136 141
|
eqtr3d |
|
| 143 |
142
|
eqeq1d |
|
| 144 |
54
|
ad2antlr |
|
| 145 |
144
|
ffvelcdmda |
|
| 146 |
145
|
recnd |
|
| 147 |
130 146
|
mulcld |
|
| 148 |
126 135 147
|
subaddd |
|
| 149 |
|
eqcom |
|
| 150 |
149
|
a1i |
|
| 151 |
130 127
|
subcld |
|
| 152 |
151 134
|
mulcld |
|
| 153 |
126 152
|
addcld |
|
| 154 |
|
elioc1 |
|
| 155 |
106 13 154
|
mp2an |
|
| 156 |
12
|
a1i |
|
| 157 |
156
|
anim1i |
|
| 158 |
157
|
3adant3 |
|
| 159 |
|
ltne |
|
| 160 |
158 159
|
syl |
|
| 161 |
155 160
|
sylbi |
|
| 162 |
161
|
ad2antlr |
|
| 163 |
153 146 130 162
|
divmul2d |
|
| 164 |
126 152 130 162
|
divdird |
|
| 165 |
126 130 162
|
divrec2d |
|
| 166 |
151 134 130 162
|
div23d |
|
| 167 |
130 127 130 162
|
divsubdird |
|
| 168 |
167
|
oveq1d |
|
| 169 |
166 168
|
eqtrd |
|
| 170 |
165 169
|
oveq12d |
|
| 171 |
164 170
|
eqtrd |
|
| 172 |
171
|
eqeq2d |
|
| 173 |
150 163 172
|
3bitr3d |
|
| 174 |
143 148 173
|
3bitr3d |
|
| 175 |
123 174
|
bitrid |
|
| 176 |
130 162
|
reccld |
|
| 177 |
176 126
|
mulcld |
|
| 178 |
127 176
|
subcld |
|
| 179 |
178 134
|
mulcld |
|
| 180 |
130 162
|
dividd |
|
| 181 |
180
|
oveq1d |
|
| 182 |
181
|
oveq1d |
|
| 183 |
182
|
oveq2d |
|
| 184 |
177 179 183
|
comraddd |
|
| 185 |
184
|
eqeq2d |
|
| 186 |
185
|
biimpd |
|
| 187 |
175 186
|
sylbid |
|
| 188 |
187
|
ralimdva |
|
| 189 |
188
|
imp |
|
| 190 |
115 122 189
|
rspcedvd |
|
| 191 |
190
|
rexlimdva2 |
|
| 192 |
11 105 191
|
3jaod |
|