| Step |
Hyp |
Ref |
Expression |
| 1 |
|
replim |
|
| 2 |
1
|
oveq2d |
|
| 3 |
|
ax-icn |
|
| 4 |
|
recl |
|
| 5 |
4
|
recnd |
|
| 6 |
|
imcl |
|
| 7 |
6
|
recnd |
|
| 8 |
|
mulcl |
|
| 9 |
3 7 8
|
sylancr |
|
| 10 |
|
adddi |
|
| 11 |
3 5 9 10
|
mp3an2i |
|
| 12 |
|
ixi |
|
| 13 |
12
|
oveq1i |
|
| 14 |
|
mulass |
|
| 15 |
3 3 7 14
|
mp3an12i |
|
| 16 |
7
|
mulm1d |
|
| 17 |
13 15 16
|
3eqtr3a |
|
| 18 |
17
|
oveq2d |
|
| 19 |
11 18
|
eqtrd |
|
| 20 |
2 19
|
eqtrd |
|
| 21 |
20
|
fveq2d |
|
| 22 |
|
mulcl |
|
| 23 |
3 5 22
|
sylancr |
|
| 24 |
6
|
renegcld |
|
| 25 |
24
|
recnd |
|
| 26 |
|
efadd |
|
| 27 |
23 25 26
|
syl2anc |
|
| 28 |
21 27
|
eqtrd |
|
| 29 |
28
|
eqeq1d |
|
| 30 |
|
efcl |
|
| 31 |
23 30
|
syl |
|
| 32 |
|
efcl |
|
| 33 |
25 32
|
syl |
|
| 34 |
31 33
|
absmuld |
|
| 35 |
|
absefi |
|
| 36 |
4 35
|
syl |
|
| 37 |
24
|
reefcld |
|
| 38 |
|
efgt0 |
|
| 39 |
24 38
|
syl |
|
| 40 |
|
0re |
|
| 41 |
|
ltle |
|
| 42 |
40 41
|
mpan |
|
| 43 |
37 39 42
|
sylc |
|
| 44 |
37 43
|
absidd |
|
| 45 |
36 44
|
oveq12d |
|
| 46 |
33
|
mullidd |
|
| 47 |
34 45 46
|
3eqtrrd |
|
| 48 |
|
fveq2 |
|
| 49 |
47 48
|
sylan9eq |
|
| 50 |
49
|
ex |
|
| 51 |
29 50
|
sylbid |
|
| 52 |
7
|
negeq0d |
|
| 53 |
|
reim0b |
|
| 54 |
|
ef0 |
|
| 55 |
|
abs1 |
|
| 56 |
54 55
|
eqtr4i |
|
| 57 |
56
|
eqeq2i |
|
| 58 |
|
reef11 |
|
| 59 |
24 40 58
|
sylancl |
|
| 60 |
57 59
|
bitr3id |
|
| 61 |
52 53 60
|
3bitr4rd |
|
| 62 |
51 61
|
sylibd |
|
| 63 |
62
|
imp |
|