Metamath Proof Explorer


Theorem ehleudisval

Description: The value of the Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023)

Ref Expression
Hypotheses ehleudis.i I=1N
ehleudis.e E=𝔼hilN
ehleudis.x X=I
ehleudis.d D=distE
Assertion ehleudisval N0FXGXFDG=kIFkGk2

Proof

Step Hyp Ref Expression
1 ehleudis.i I=1N
2 ehleudis.e E=𝔼hilN
3 ehleudis.x X=I
4 ehleudis.d D=distE
5 2 ehlval N0E=msup
6 5 fveq2d N0distE=distmsup
7 4 6 eqtrid N0D=distmsup
8 7 oveqd N0FDG=FdistmsupG
9 8 3ad2ant1 N0FXGXFDG=FdistmsupG
10 fzfi 1NFin
11 1 10 eqeltri IFin
12 3 eleq2i FXFI
13 12 biimpi FXFI
14 13 3ad2ant2 N0FXGXFI
15 3 eleq2i GXGI
16 15 biimpi GXGI
17 16 3ad2ant3 N0FXGXGI
18 eqid I=I
19 1 eqcomi 1N=I
20 19 fveq2i msup=msup
21 20 fveq2i distmsup=distmsup
22 18 21 rrxdsfival IFinFIGIFdistmsupG=kIFkGk2
23 11 14 17 22 mp3an2i N0FXGXFdistmsupG=kIFkGk2
24 9 23 eqtrd N0FXGXFDG=kIFkGk2