Metamath Proof Explorer


Theorem eldmcoa

Description: A pair <. G , F >. is in the domain of the arrow composition, if the domain of G equals the codomain of F . (In this case we say G and F are composable.) (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses coafval.o ·˙=compaC
coafval.a A=ArrowC
Assertion eldmcoa Gdom·˙FFAGAcodaF=domaG

Proof

Step Hyp Ref Expression
1 coafval.o ·˙=compaC
2 coafval.a A=ArrowC
3 df-br Gdom·˙FGFdom·˙
4 otex domafcodag2ndgdomafdomagcompCcodag2ndfV
5 4 rgen2w gAfhA|codah=domagdomafcodag2ndgdomafdomagcompCcodag2ndfV
6 eqid compC=compC
7 1 2 6 coafval ·˙=gA,fhA|codah=domagdomafcodag2ndgdomafdomagcompCcodag2ndf
8 7 fmpox gAfhA|codah=domagdomafcodag2ndgdomafdomagcompCcodag2ndfV·˙:gAg×hA|codah=domagV
9 5 8 mpbi ·˙:gAg×hA|codah=domagV
10 9 fdmi dom·˙=gAg×hA|codah=domag
11 10 eleq2i GFdom·˙GFgAg×hA|codah=domag
12 fveq2 g=Gdomag=domaG
13 12 eqeq2d g=Gcodah=domagcodah=domaG
14 13 rabbidv g=GhA|codah=domag=hA|codah=domaG
15 14 opeliunxp2 GFgAg×hA|codah=domagGAFhA|codah=domaG
16 fveqeq2 h=Fcodah=domaGcodaF=domaG
17 16 elrab FhA|codah=domaGFAcodaF=domaG
18 17 anbi2i GAFhA|codah=domaGGAFAcodaF=domaG
19 an12 GAFAcodaF=domaGFAGAcodaF=domaG
20 3anass FAGAcodaF=domaGFAGAcodaF=domaG
21 19 20 bitr4i GAFAcodaF=domaGFAGAcodaF=domaG
22 15 18 21 3bitri GFgAg×hA|codah=domagFAGAcodaF=domaG
23 3 11 22 3bitri Gdom·˙FFAGAcodaF=domaG