Metamath Proof Explorer


Theorem elfzomelpfzo

Description: An integer increased by another integer is an element of a half-open integer range if and only if the integer is contained in the half-open integer range with bounds decreased by the other integer. (Contributed by Alexander van der Vekens, 30-Mar-2018)

Ref Expression
Assertion elfzomelpfzo MNKLKML..^NLK+LM..^N

Proof

Step Hyp Ref Expression
1 zsubcl MLML
2 1 ad2ant2rl MNKLML
3 simpl MNM
4 3 adantr MNKLM
5 2 4 2thd MNKLMLM
6 simpl KLK
7 6 adantl MNKLK
8 zaddcl KLK+L
9 8 adantl MNKLK+L
10 7 9 2thd MNKLKK+L
11 zre MM
12 11 adantr MNM
13 12 adantr MNKLM
14 zre LL
15 14 adantl KLL
16 15 adantl MNKLL
17 zre KK
18 17 adantr KLK
19 18 adantl MNKLK
20 13 16 19 lesubaddd MNKLMLKMK+L
21 5 10 20 3anbi123d MNKLMLKMLKMK+LMK+L
22 eluz2 KMLMLKMLK
23 eluz2 K+LMMK+LMK+L
24 21 22 23 3bitr4g MNKLKMLK+LM
25 zsubcl NLNL
26 25 ad2ant2l MNKLNL
27 simplr MNKLN
28 26 27 2thd MNKLNLN
29 zre NN
30 29 adantl MNN
31 30 adantr MNKLN
32 19 16 31 ltaddsubd MNKLK+L<NK<NL
33 32 bicomd MNKLK<NLK+L<N
34 24 28 33 3anbi123d MNKLKMLNLK<NLK+LMNK+L<N
35 elfzo2 KML..^NLKMLNLK<NL
36 elfzo2 K+LM..^NK+LMNK+L<N
37 34 35 36 3bitr4g MNKLKML..^NLK+LM..^N