| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfz2nn0 |
|
| 2 |
|
nn0z |
|
| 3 |
|
nn0z |
|
| 4 |
2 3
|
anim12i |
|
| 5 |
4
|
3adant3 |
|
| 6 |
|
elfzom1b |
|
| 7 |
5 6
|
syl |
|
| 8 |
7
|
notbid |
|
| 9 |
|
elfzo0 |
|
| 10 |
9
|
a1i |
|
| 11 |
10
|
notbid |
|
| 12 |
|
3ianor |
|
| 13 |
|
elnnne0 |
|
| 14 |
|
df-ne |
|
| 15 |
14
|
anbi2i |
|
| 16 |
13 15
|
bitr2i |
|
| 17 |
|
nnm1nn0 |
|
| 18 |
16 17
|
sylbi |
|
| 19 |
18
|
ex |
|
| 20 |
19
|
con1d |
|
| 21 |
20
|
imp |
|
| 22 |
21
|
orcd |
|
| 23 |
22
|
ex |
|
| 24 |
23
|
3ad2ant1 |
|
| 25 |
24
|
com12 |
|
| 26 |
|
ioran |
|
| 27 |
|
nn1m1nn |
|
| 28 |
|
df-ne |
|
| 29 |
|
necom |
|
| 30 |
|
nn0re |
|
| 31 |
30
|
ad2antlr |
|
| 32 |
|
nn0re |
|
| 33 |
32
|
adantr |
|
| 34 |
33
|
adantr |
|
| 35 |
|
simpr |
|
| 36 |
31 34 35
|
leltned |
|
| 37 |
29 36
|
bitr4id |
|
| 38 |
37
|
adantr |
|
| 39 |
|
breq1 |
|
| 40 |
39
|
biimpa |
|
| 41 |
|
1red |
|
| 42 |
41 33 41
|
ltsub1d |
|
| 43 |
|
1m1e0 |
|
| 44 |
43
|
breq1i |
|
| 45 |
|
1zzd |
|
| 46 |
3 45
|
zsubcld |
|
| 47 |
46
|
adantr |
|
| 48 |
47
|
adantr |
|
| 49 |
|
simpr |
|
| 50 |
|
elnnz |
|
| 51 |
48 49 50
|
sylanbrc |
|
| 52 |
51
|
ex |
|
| 53 |
44 52
|
biimtrid |
|
| 54 |
42 53
|
sylbid |
|
| 55 |
40 54
|
syl5 |
|
| 56 |
55
|
expd |
|
| 57 |
56
|
adantr |
|
| 58 |
57
|
imp |
|
| 59 |
38 58
|
sylbid |
|
| 60 |
59
|
exp31 |
|
| 61 |
60
|
com14 |
|
| 62 |
28 61
|
sylbir |
|
| 63 |
62
|
com23 |
|
| 64 |
63
|
com14 |
|
| 65 |
64
|
ex |
|
| 66 |
65
|
com14 |
|
| 67 |
66
|
com13 |
|
| 68 |
30
|
ad2antlr |
|
| 69 |
32
|
adantl |
|
| 70 |
|
1red |
|
| 71 |
68 69 70
|
lesub1d |
|
| 72 |
3
|
ad2antlr |
|
| 73 |
|
1zzd |
|
| 74 |
72 73
|
zsubcld |
|
| 75 |
|
nngt0 |
|
| 76 |
|
0red |
|
| 77 |
|
peano2rem |
|
| 78 |
30 77
|
syl |
|
| 79 |
78
|
adantr |
|
| 80 |
|
peano2rem |
|
| 81 |
32 80
|
syl |
|
| 82 |
81
|
adantl |
|
| 83 |
|
ltletr |
|
| 84 |
76 79 82 83
|
syl3anc |
|
| 85 |
84
|
ex |
|
| 86 |
85
|
com13 |
|
| 87 |
86
|
ex |
|
| 88 |
87
|
com24 |
|
| 89 |
75 88
|
syl |
|
| 90 |
89
|
imp41 |
|
| 91 |
74 90 50
|
sylanbrc |
|
| 92 |
91
|
a1d |
|
| 93 |
92
|
ex |
|
| 94 |
71 93
|
sylbid |
|
| 95 |
94
|
ex |
|
| 96 |
95
|
com23 |
|
| 97 |
96
|
ex |
|
| 98 |
67 97
|
jaoi |
|
| 99 |
27 98
|
syl |
|
| 100 |
13 99
|
sylbir |
|
| 101 |
100
|
ex |
|
| 102 |
101
|
pm2.43a |
|
| 103 |
102
|
com24 |
|
| 104 |
103
|
3imp |
|
| 105 |
104
|
com3l |
|
| 106 |
14 105
|
sylbir |
|
| 107 |
106
|
imp |
|
| 108 |
26 107
|
sylbi |
|
| 109 |
108
|
com12 |
|
| 110 |
109
|
con1d |
|
| 111 |
110
|
com12 |
|
| 112 |
30
|
adantr |
|
| 113 |
32
|
adantl |
|
| 114 |
|
1red |
|
| 115 |
112 113 114
|
3jca |
|
| 116 |
115
|
3adant3 |
|
| 117 |
|
ltsub1 |
|
| 118 |
116 117
|
syl |
|
| 119 |
118
|
bicomd |
|
| 120 |
119
|
notbid |
|
| 121 |
|
eqlelt |
|
| 122 |
30 32 121
|
syl2an |
|
| 123 |
122
|
biimpar |
|
| 124 |
123
|
olcd |
|
| 125 |
124
|
exp43 |
|
| 126 |
125
|
3imp |
|
| 127 |
120 126
|
sylbid |
|
| 128 |
127
|
com12 |
|
| 129 |
25 111 128
|
3jaoi |
|
| 130 |
12 129
|
sylbi |
|
| 131 |
130
|
com12 |
|
| 132 |
11 131
|
sylbid |
|
| 133 |
8 132
|
sylbid |
|
| 134 |
1 133
|
sylbi |
|
| 135 |
134
|
imp |
|