| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfz2nn0 |
⊢ ( 𝑀 ∈ ( 0 ... 𝐾 ) ↔ ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) ) |
| 2 |
|
nn0z |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ ) |
| 3 |
|
nn0z |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ ) |
| 4 |
2 3
|
anim12i |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ) |
| 5 |
4
|
3adant3 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ) |
| 6 |
|
elfzom1b |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝑀 ∈ ( 1 ..^ 𝐾 ) ↔ ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) ) ) |
| 7 |
5 6
|
syl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 ∈ ( 1 ..^ 𝐾 ) ↔ ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) ) ) |
| 8 |
7
|
notbid |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) ↔ ¬ ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) ) ) |
| 9 |
|
elfzo0 |
⊢ ( ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) ↔ ( ( 𝑀 − 1 ) ∈ ℕ0 ∧ ( 𝐾 − 1 ) ∈ ℕ ∧ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ) |
| 10 |
9
|
a1i |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) ↔ ( ( 𝑀 − 1 ) ∈ ℕ0 ∧ ( 𝐾 − 1 ) ∈ ℕ ∧ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ) ) |
| 11 |
10
|
notbid |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) ↔ ¬ ( ( 𝑀 − 1 ) ∈ ℕ0 ∧ ( 𝐾 − 1 ) ∈ ℕ ∧ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ) ) |
| 12 |
|
3ianor |
⊢ ( ¬ ( ( 𝑀 − 1 ) ∈ ℕ0 ∧ ( 𝐾 − 1 ) ∈ ℕ ∧ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ↔ ( ¬ ( 𝑀 − 1 ) ∈ ℕ0 ∨ ¬ ( 𝐾 − 1 ) ∈ ℕ ∨ ¬ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ) |
| 13 |
|
elnnne0 |
⊢ ( 𝑀 ∈ ℕ ↔ ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≠ 0 ) ) |
| 14 |
|
df-ne |
⊢ ( 𝑀 ≠ 0 ↔ ¬ 𝑀 = 0 ) |
| 15 |
14
|
anbi2i |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≠ 0 ) ↔ ( 𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0 ) ) |
| 16 |
13 15
|
bitr2i |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0 ) ↔ 𝑀 ∈ ℕ ) |
| 17 |
|
nnm1nn0 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) ∈ ℕ0 ) |
| 18 |
16 17
|
sylbi |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0 ) → ( 𝑀 − 1 ) ∈ ℕ0 ) |
| 19 |
18
|
ex |
⊢ ( 𝑀 ∈ ℕ0 → ( ¬ 𝑀 = 0 → ( 𝑀 − 1 ) ∈ ℕ0 ) ) |
| 20 |
19
|
con1d |
⊢ ( 𝑀 ∈ ℕ0 → ( ¬ ( 𝑀 − 1 ) ∈ ℕ0 → 𝑀 = 0 ) ) |
| 21 |
20
|
imp |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ ¬ ( 𝑀 − 1 ) ∈ ℕ0 ) → 𝑀 = 0 ) |
| 22 |
21
|
orcd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ ¬ ( 𝑀 − 1 ) ∈ ℕ0 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) |
| 23 |
22
|
ex |
⊢ ( 𝑀 ∈ ℕ0 → ( ¬ ( 𝑀 − 1 ) ∈ ℕ0 → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 24 |
23
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝑀 − 1 ) ∈ ℕ0 → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 25 |
24
|
com12 |
⊢ ( ¬ ( 𝑀 − 1 ) ∈ ℕ0 → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 26 |
|
ioran |
⊢ ( ¬ ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ↔ ( ¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾 ) ) |
| 27 |
|
nn1m1nn |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 = 1 ∨ ( 𝑀 − 1 ) ∈ ℕ ) ) |
| 28 |
|
df-ne |
⊢ ( 𝑀 ≠ 𝐾 ↔ ¬ 𝑀 = 𝐾 ) |
| 29 |
|
necom |
⊢ ( 𝑀 ≠ 𝐾 ↔ 𝐾 ≠ 𝑀 ) |
| 30 |
|
nn0re |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) |
| 31 |
30
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) → 𝑀 ∈ ℝ ) |
| 32 |
|
nn0re |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → 𝐾 ∈ ℝ ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) → 𝐾 ∈ ℝ ) |
| 35 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) → 𝑀 ≤ 𝐾 ) |
| 36 |
31 34 35
|
leltned |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 < 𝐾 ↔ 𝐾 ≠ 𝑀 ) ) |
| 37 |
29 36
|
bitr4id |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 ≠ 𝐾 ↔ 𝑀 < 𝐾 ) ) |
| 38 |
37
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) ∧ 𝑀 = 1 ) → ( 𝑀 ≠ 𝐾 ↔ 𝑀 < 𝐾 ) ) |
| 39 |
|
breq1 |
⊢ ( 𝑀 = 1 → ( 𝑀 < 𝐾 ↔ 1 < 𝐾 ) ) |
| 40 |
39
|
biimpa |
⊢ ( ( 𝑀 = 1 ∧ 𝑀 < 𝐾 ) → 1 < 𝐾 ) |
| 41 |
|
1red |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → 1 ∈ ℝ ) |
| 42 |
41 33 41
|
ltsub1d |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 1 < 𝐾 ↔ ( 1 − 1 ) < ( 𝐾 − 1 ) ) ) |
| 43 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 44 |
43
|
breq1i |
⊢ ( ( 1 − 1 ) < ( 𝐾 − 1 ) ↔ 0 < ( 𝐾 − 1 ) ) |
| 45 |
|
1zzd |
⊢ ( 𝐾 ∈ ℕ0 → 1 ∈ ℤ ) |
| 46 |
3 45
|
zsubcld |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝐾 − 1 ) ∈ ℤ ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 − 1 ) ∈ ℤ ) |
| 48 |
47
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 0 < ( 𝐾 − 1 ) ) → ( 𝐾 − 1 ) ∈ ℤ ) |
| 49 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 0 < ( 𝐾 − 1 ) ) → 0 < ( 𝐾 − 1 ) ) |
| 50 |
|
elnnz |
⊢ ( ( 𝐾 − 1 ) ∈ ℕ ↔ ( ( 𝐾 − 1 ) ∈ ℤ ∧ 0 < ( 𝐾 − 1 ) ) ) |
| 51 |
48 49 50
|
sylanbrc |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 0 < ( 𝐾 − 1 ) ) → ( 𝐾 − 1 ) ∈ ℕ ) |
| 52 |
51
|
ex |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 0 < ( 𝐾 − 1 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) |
| 53 |
44 52
|
biimtrid |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 1 − 1 ) < ( 𝐾 − 1 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) |
| 54 |
42 53
|
sylbid |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 1 < 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) |
| 55 |
40 54
|
syl5 |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑀 = 1 ∧ 𝑀 < 𝐾 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) |
| 56 |
55
|
expd |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 = 1 → ( 𝑀 < 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
| 57 |
56
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 = 1 → ( 𝑀 < 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
| 58 |
57
|
imp |
⊢ ( ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) ∧ 𝑀 = 1 ) → ( 𝑀 < 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) |
| 59 |
38 58
|
sylbid |
⊢ ( ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) ∧ 𝑀 = 1 ) → ( 𝑀 ≠ 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) |
| 60 |
59
|
exp31 |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 ≤ 𝐾 → ( 𝑀 = 1 → ( 𝑀 ≠ 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
| 61 |
60
|
com14 |
⊢ ( 𝑀 ≠ 𝐾 → ( 𝑀 ≤ 𝐾 → ( 𝑀 = 1 → ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
| 62 |
28 61
|
sylbir |
⊢ ( ¬ 𝑀 = 𝐾 → ( 𝑀 ≤ 𝐾 → ( 𝑀 = 1 → ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
| 63 |
62
|
com23 |
⊢ ( ¬ 𝑀 = 𝐾 → ( 𝑀 = 1 → ( 𝑀 ≤ 𝐾 → ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
| 64 |
63
|
com14 |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 = 1 → ( 𝑀 ≤ 𝐾 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
| 65 |
64
|
ex |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → ( 𝑀 = 1 → ( 𝑀 ≤ 𝐾 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
| 66 |
65
|
com14 |
⊢ ( 𝑀 ≤ 𝐾 → ( 𝑀 ∈ ℕ0 → ( 𝑀 = 1 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
| 67 |
66
|
com13 |
⊢ ( 𝑀 = 1 → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
| 68 |
30
|
ad2antlr |
⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
| 69 |
32
|
adantl |
⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℝ ) |
| 70 |
|
1red |
⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → 1 ∈ ℝ ) |
| 71 |
68 69 70
|
lesub1d |
⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 ≤ 𝐾 ↔ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) ) |
| 72 |
3
|
ad2antlr |
⊢ ( ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → 𝐾 ∈ ℤ ) |
| 73 |
|
1zzd |
⊢ ( ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → 1 ∈ ℤ ) |
| 74 |
72 73
|
zsubcld |
⊢ ( ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → ( 𝐾 − 1 ) ∈ ℤ ) |
| 75 |
|
nngt0 |
⊢ ( ( 𝑀 − 1 ) ∈ ℕ → 0 < ( 𝑀 − 1 ) ) |
| 76 |
|
0red |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → 0 ∈ ℝ ) |
| 77 |
|
peano2rem |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 − 1 ) ∈ ℝ ) |
| 78 |
30 77
|
syl |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 − 1 ) ∈ ℝ ) |
| 79 |
78
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 − 1 ) ∈ ℝ ) |
| 80 |
|
peano2rem |
⊢ ( 𝐾 ∈ ℝ → ( 𝐾 − 1 ) ∈ ℝ ) |
| 81 |
32 80
|
syl |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝐾 − 1 ) ∈ ℝ ) |
| 82 |
81
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝐾 − 1 ) ∈ ℝ ) |
| 83 |
|
ltletr |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝑀 − 1 ) ∈ ℝ ∧ ( 𝐾 − 1 ) ∈ ℝ ) → ( ( 0 < ( 𝑀 − 1 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → 0 < ( 𝐾 − 1 ) ) ) |
| 84 |
76 79 82 83
|
syl3anc |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( ( 0 < ( 𝑀 − 1 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → 0 < ( 𝐾 − 1 ) ) ) |
| 85 |
84
|
ex |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝐾 ∈ ℕ0 → ( ( 0 < ( 𝑀 − 1 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → 0 < ( 𝐾 − 1 ) ) ) ) |
| 86 |
85
|
com13 |
⊢ ( ( 0 < ( 𝑀 − 1 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → ( 𝐾 ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → 0 < ( 𝐾 − 1 ) ) ) ) |
| 87 |
86
|
ex |
⊢ ( 0 < ( 𝑀 − 1 ) → ( ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) → ( 𝐾 ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → 0 < ( 𝐾 − 1 ) ) ) ) ) |
| 88 |
87
|
com24 |
⊢ ( 0 < ( 𝑀 − 1 ) → ( 𝑀 ∈ ℕ0 → ( 𝐾 ∈ ℕ0 → ( ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) → 0 < ( 𝐾 − 1 ) ) ) ) ) |
| 89 |
75 88
|
syl |
⊢ ( ( 𝑀 − 1 ) ∈ ℕ → ( 𝑀 ∈ ℕ0 → ( 𝐾 ∈ ℕ0 → ( ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) → 0 < ( 𝐾 − 1 ) ) ) ) ) |
| 90 |
89
|
imp41 |
⊢ ( ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → 0 < ( 𝐾 − 1 ) ) |
| 91 |
74 90 50
|
sylanbrc |
⊢ ( ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → ( 𝐾 − 1 ) ∈ ℕ ) |
| 92 |
91
|
a1d |
⊢ ( ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) |
| 93 |
92
|
ex |
⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
| 94 |
71 93
|
sylbid |
⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 ≤ 𝐾 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
| 95 |
94
|
ex |
⊢ ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
| 96 |
95
|
com23 |
⊢ ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
| 97 |
96
|
ex |
⊢ ( ( 𝑀 − 1 ) ∈ ℕ → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
| 98 |
67 97
|
jaoi |
⊢ ( ( 𝑀 = 1 ∨ ( 𝑀 − 1 ) ∈ ℕ ) → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
| 99 |
27 98
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
| 100 |
13 99
|
sylbir |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≠ 0 ) → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
| 101 |
100
|
ex |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ≠ 0 → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) ) |
| 102 |
101
|
pm2.43a |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ≠ 0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
| 103 |
102
|
com24 |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝐾 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝑀 ≠ 0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
| 104 |
103
|
3imp |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 ≠ 0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
| 105 |
104
|
com3l |
⊢ ( 𝑀 ≠ 0 → ( ¬ 𝑀 = 𝐾 → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
| 106 |
14 105
|
sylbir |
⊢ ( ¬ 𝑀 = 0 → ( ¬ 𝑀 = 𝐾 → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
| 107 |
106
|
imp |
⊢ ( ( ¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) |
| 108 |
26 107
|
sylbi |
⊢ ( ¬ ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) |
| 109 |
108
|
com12 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) |
| 110 |
109
|
con1d |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝐾 − 1 ) ∈ ℕ → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 111 |
110
|
com12 |
⊢ ( ¬ ( 𝐾 − 1 ) ∈ ℕ → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 112 |
30
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
| 113 |
32
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℝ ) |
| 114 |
|
1red |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → 1 ∈ ℝ ) |
| 115 |
112 113 114
|
3jca |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ ) ) |
| 116 |
115
|
3adant3 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ ) ) |
| 117 |
|
ltsub1 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑀 < 𝐾 ↔ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ) |
| 118 |
116 117
|
syl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 < 𝐾 ↔ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ) |
| 119 |
118
|
bicomd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ↔ 𝑀 < 𝐾 ) ) |
| 120 |
119
|
notbid |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ↔ ¬ 𝑀 < 𝐾 ) ) |
| 121 |
|
eqlelt |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( 𝑀 = 𝐾 ↔ ( 𝑀 ≤ 𝐾 ∧ ¬ 𝑀 < 𝐾 ) ) ) |
| 122 |
30 32 121
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 = 𝐾 ↔ ( 𝑀 ≤ 𝐾 ∧ ¬ 𝑀 < 𝐾 ) ) ) |
| 123 |
122
|
biimpar |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 ≤ 𝐾 ∧ ¬ 𝑀 < 𝐾 ) ) → 𝑀 = 𝐾 ) |
| 124 |
123
|
olcd |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 ≤ 𝐾 ∧ ¬ 𝑀 < 𝐾 ) ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) |
| 125 |
124
|
exp43 |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝐾 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( ¬ 𝑀 < 𝐾 → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) ) ) |
| 126 |
125
|
3imp |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ 𝑀 < 𝐾 → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 127 |
120 126
|
sylbid |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 128 |
127
|
com12 |
⊢ ( ¬ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 129 |
25 111 128
|
3jaoi |
⊢ ( ( ¬ ( 𝑀 − 1 ) ∈ ℕ0 ∨ ¬ ( 𝐾 − 1 ) ∈ ℕ ∨ ¬ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 130 |
12 129
|
sylbi |
⊢ ( ¬ ( ( 𝑀 − 1 ) ∈ ℕ0 ∧ ( 𝐾 − 1 ) ∈ ℕ ∧ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 131 |
130
|
com12 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( ( 𝑀 − 1 ) ∈ ℕ0 ∧ ( 𝐾 − 1 ) ∈ ℕ ∧ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 132 |
11 131
|
sylbid |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 133 |
8 132
|
sylbid |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 134 |
1 133
|
sylbi |
⊢ ( 𝑀 ∈ ( 0 ... 𝐾 ) → ( ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 135 |
134
|
imp |
⊢ ( ( 𝑀 ∈ ( 0 ... 𝐾 ) ∧ ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) |