Metamath Proof Explorer


Theorem elirrv

Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of Suppes p. 54. (This is trivial to prove from zfregfr and efrirr , but this proof is direct from the Axiom of Regularity.) (Contributed by NM, 19-Aug-1993)

Ref Expression
Assertion elirrv ¬xx

Proof

Step Hyp Ref Expression
1 vsnex xV
2 eleq1w y=xyxxx
3 vsnid xx
4 2 3 speivw yyx
5 zfregcl xVyyxyxzy¬zx
6 1 4 5 mp2 yxzy¬zx
7 velsn yxy=x
8 ax9 x=yxxxy
9 8 equcoms y=xxxxy
10 9 com12 xxy=xxy
11 7 10 biimtrid xxyxxy
12 eleq1w z=xzxxx
13 12 notbid z=x¬zx¬xx
14 13 rspccv zy¬zxxy¬xx
15 3 14 mt2i zy¬zx¬xy
16 11 15 nsyli xxzy¬zx¬yx
17 16 con2d xxyx¬zy¬zx
18 17 ralrimiv xxyx¬zy¬zx
19 ralnex yx¬zy¬zx¬yxzy¬zx
20 18 19 sylib xx¬yxzy¬zx
21 6 20 mt2 ¬xx