Metamath Proof Explorer


Theorem elmpst

Description: Property of being a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mpstval.v V=mDVT
mpstval.e E=mExT
mpstval.p P=mPreStT
Assertion elmpst DHAPDVD-1=DHEHFinAE

Proof

Step Hyp Ref Expression
1 mpstval.v V=mDVT
2 mpstval.e E=mExT
3 mpstval.p P=mPreStT
4 opelxp DHAd𝒫V|d-1=d×𝒫EFin×EDHd𝒫V|d-1=d×𝒫EFinAE
5 opelxp DHd𝒫V|d-1=d×𝒫EFinDd𝒫V|d-1=dH𝒫EFin
6 cnveq d=Dd-1=D-1
7 id d=Dd=D
8 6 7 eqeq12d d=Dd-1=dD-1=D
9 8 elrab Dd𝒫V|d-1=dD𝒫VD-1=D
10 1 fvexi VV
11 10 elpw2 D𝒫VDV
12 11 anbi1i D𝒫VD-1=DDVD-1=D
13 9 12 bitri Dd𝒫V|d-1=dDVD-1=D
14 elfpw H𝒫EFinHEHFin
15 13 14 anbi12i Dd𝒫V|d-1=dH𝒫EFinDVD-1=DHEHFin
16 5 15 bitri DHd𝒫V|d-1=d×𝒫EFinDVD-1=DHEHFin
17 16 anbi1i DHd𝒫V|d-1=d×𝒫EFinAEDVD-1=DHEHFinAE
18 4 17 bitri DHAd𝒫V|d-1=d×𝒫EFin×EDVD-1=DHEHFinAE
19 df-ot DHA=DHA
20 1 2 3 mpstval P=d𝒫V|d-1=d×𝒫EFin×E
21 19 20 eleq12i DHAPDHAd𝒫V|d-1=d×𝒫EFin×E
22 df-3an DVD-1=DHEHFinAEDVD-1=DHEHFinAE
23 18 21 22 3bitr4i DHAPDVD-1=DHEHFinAE