Metamath Proof Explorer


Theorem elmpst

Description: Property of being a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mpstval.v V = mDV T
mpstval.e E = mEx T
mpstval.p P = mPreSt T
Assertion elmpst D H A P D V D -1 = D H E H Fin A E

Proof

Step Hyp Ref Expression
1 mpstval.v V = mDV T
2 mpstval.e E = mEx T
3 mpstval.p P = mPreSt T
4 opelxp D H A d 𝒫 V | d -1 = d × 𝒫 E Fin × E D H d 𝒫 V | d -1 = d × 𝒫 E Fin A E
5 opelxp D H d 𝒫 V | d -1 = d × 𝒫 E Fin D d 𝒫 V | d -1 = d H 𝒫 E Fin
6 cnveq d = D d -1 = D -1
7 id d = D d = D
8 6 7 eqeq12d d = D d -1 = d D -1 = D
9 8 elrab D d 𝒫 V | d -1 = d D 𝒫 V D -1 = D
10 1 fvexi V V
11 10 elpw2 D 𝒫 V D V
12 11 anbi1i D 𝒫 V D -1 = D D V D -1 = D
13 9 12 bitri D d 𝒫 V | d -1 = d D V D -1 = D
14 elfpw H 𝒫 E Fin H E H Fin
15 13 14 anbi12i D d 𝒫 V | d -1 = d H 𝒫 E Fin D V D -1 = D H E H Fin
16 5 15 bitri D H d 𝒫 V | d -1 = d × 𝒫 E Fin D V D -1 = D H E H Fin
17 16 anbi1i D H d 𝒫 V | d -1 = d × 𝒫 E Fin A E D V D -1 = D H E H Fin A E
18 4 17 bitri D H A d 𝒫 V | d -1 = d × 𝒫 E Fin × E D V D -1 = D H E H Fin A E
19 df-ot D H A = D H A
20 1 2 3 mpstval P = d 𝒫 V | d -1 = d × 𝒫 E Fin × E
21 19 20 eleq12i D H A P D H A d 𝒫 V | d -1 = d × 𝒫 E Fin × E
22 df-3an D V D -1 = D H E H Fin A E D V D -1 = D H E H Fin A E
23 18 21 22 3bitr4i D H A P D V D -1 = D H E H Fin A E