Metamath Proof Explorer


Theorem elnpi

Description: Membership in positive reals. (Contributed by Mario Carneiro, 11-May-2013) (New usage is discouraged.)

Ref Expression
Assertion elnpi A𝑷AVAA𝑸xAyy<𝑸xyAyAx<𝑸y

Proof

Step Hyp Ref Expression
1 elex A𝑷AV
2 simpl1 AVAA𝑸xAyy<𝑸xyAyAx<𝑸yAV
3 psseq2 z=AzA
4 psseq1 z=Az𝑸A𝑸
5 3 4 anbi12d z=Azz𝑸AA𝑸
6 eleq2 z=AyzyA
7 6 imbi2d z=Ay<𝑸xyzy<𝑸xyA
8 7 albidv z=Ayy<𝑸xyzyy<𝑸xyA
9 rexeq z=Ayzx<𝑸yyAx<𝑸y
10 8 9 anbi12d z=Ayy<𝑸xyzyzx<𝑸yyy<𝑸xyAyAx<𝑸y
11 10 raleqbi1dv z=Axzyy<𝑸xyzyzx<𝑸yxAyy<𝑸xyAyAx<𝑸y
12 5 11 anbi12d z=Azz𝑸xzyy<𝑸xyzyzx<𝑸yAA𝑸xAyy<𝑸xyAyAx<𝑸y
13 df-np 𝑷=z|zz𝑸xzyy<𝑸xyzyzx<𝑸y
14 12 13 elab2g AVA𝑷AA𝑸xAyy<𝑸xyAyAx<𝑸y
15 id AVAA𝑸AVAA𝑸
16 15 3expib AVAA𝑸AVAA𝑸
17 3simpc AVAA𝑸AA𝑸
18 16 17 impbid1 AVAA𝑸AVAA𝑸
19 18 anbi1d AVAA𝑸xAyy<𝑸xyAyAx<𝑸yAVAA𝑸xAyy<𝑸xyAyAx<𝑸y
20 14 19 bitrd AVA𝑷AVAA𝑸xAyy<𝑸xyAyAx<𝑸y
21 1 2 20 pm5.21nii A𝑷AVAA𝑸xAyy<𝑸xyAyAx<𝑸y