| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elq |  | 
						
							| 2 |  | rexcom |  | 
						
							| 3 | 1 2 | bitri |  | 
						
							| 4 |  | breq2 |  | 
						
							| 5 |  | zre |  | 
						
							| 6 | 5 | adantl |  | 
						
							| 7 |  | nnre |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 |  | nngt0 |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 |  | gt0div |  | 
						
							| 12 | 6 8 10 11 | syl3anc |  | 
						
							| 13 | 12 | bicomd |  | 
						
							| 14 | 4 13 | sylan9bb |  | 
						
							| 15 |  | oveq1 |  | 
						
							| 16 | 15 | eqeq2d |  | 
						
							| 17 |  | elnnz |  | 
						
							| 18 | 17 | simplbi2 |  | 
						
							| 19 | 18 | adantl |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 | 20 | imp |  | 
						
							| 22 |  | simpll |  | 
						
							| 23 | 16 21 22 | rspcedvdw |  | 
						
							| 24 | 23 | ex |  | 
						
							| 25 | 14 24 | sylbid |  | 
						
							| 26 | 25 | ex |  | 
						
							| 27 | 26 | com13 |  | 
						
							| 28 | 27 | impl |  | 
						
							| 29 | 28 | rexlimdva |  | 
						
							| 30 | 29 | reximdva |  | 
						
							| 31 | 3 30 | biimtrid |  | 
						
							| 32 | 31 | impcom |  | 
						
							| 33 |  | rexcom |  | 
						
							| 34 | 32 33 | sylibr |  |