Metamath Proof Explorer


Theorem elpwunsn

Description: Membership in an extension of a power class. (Contributed by NM, 26-Mar-2007)

Ref Expression
Assertion elpwunsn A𝒫BC𝒫BCA

Proof

Step Hyp Ref Expression
1 eldif A𝒫BC𝒫BA𝒫BC¬A𝒫B
2 elpwg A𝒫BCA𝒫BAB
3 dfss3 ABxAxB
4 2 3 bitrdi A𝒫BCA𝒫BxAxB
5 4 notbid A𝒫BC¬A𝒫B¬xAxB
6 5 biimpa A𝒫BC¬A𝒫B¬xAxB
7 rexnal xA¬xB¬xAxB
8 6 7 sylibr A𝒫BC¬A𝒫BxA¬xB
9 elpwi A𝒫BCABC
10 ssel ABCxAxBC
11 elun xBCxBxC
12 elsni xCx=C
13 12 orim2i xBxCxBx=C
14 13 ord xBxC¬xBx=C
15 11 14 sylbi xBC¬xBx=C
16 15 imim2i xAxBCxA¬xBx=C
17 16 impd xAxBCxA¬xBx=C
18 9 10 17 3syl A𝒫BCxA¬xBx=C
19 eleq1 x=CxACA
20 19 biimpd x=CxACA
21 18 20 syl6 A𝒫BCxA¬xBxACA
22 21 expd A𝒫BCxA¬xBxACA
23 22 com4r xAA𝒫BCxA¬xBCA
24 23 pm2.43b A𝒫BCxA¬xBCA
25 24 rexlimdv A𝒫BCxA¬xBCA
26 25 imp A𝒫BCxA¬xBCA
27 8 26 syldan A𝒫BC¬A𝒫BCA
28 1 27 sylbi A𝒫BC𝒫BCA