| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpw2g |  | 
						
							| 2 | 1 | biimprd |  | 
						
							| 3 | 2 | ralimdv |  | 
						
							| 4 | 3 | imp |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 5 | fmpt |  | 
						
							| 7 | 4 6 | sylib |  | 
						
							| 8 |  | elrfirn |  | 
						
							| 9 | 7 8 | syldan |  | 
						
							| 10 |  | inss1 |  | 
						
							| 11 | 10 | sseli |  | 
						
							| 12 | 11 | elpwid |  | 
						
							| 13 |  | nffvmpt1 |  | 
						
							| 14 |  | nfcv |  | 
						
							| 15 |  | fveq2 |  | 
						
							| 16 | 13 14 15 | cbviin |  | 
						
							| 17 |  | simplr |  | 
						
							| 18 |  | simpll |  | 
						
							| 19 |  | simpr |  | 
						
							| 20 | 18 19 | ssexd |  | 
						
							| 21 | 5 | fvmpt2 |  | 
						
							| 22 | 17 20 21 | syl2anc |  | 
						
							| 23 | 22 | ex |  | 
						
							| 24 | 23 | ralimdva |  | 
						
							| 25 | 24 | imp |  | 
						
							| 26 |  | ssralv |  | 
						
							| 27 | 25 26 | mpan9 |  | 
						
							| 28 |  | iineq2 |  | 
						
							| 29 | 27 28 | syl |  | 
						
							| 30 | 16 29 | eqtrid |  | 
						
							| 31 | 30 | ineq2d |  | 
						
							| 32 | 31 | eqeq2d |  | 
						
							| 33 | 12 32 | sylan2 |  | 
						
							| 34 | 33 | rexbidva |  | 
						
							| 35 | 9 34 | bitrd |  |